Z8/Z8Plus C-Compiler
User’s Manual

UMO002801-COR1099

© 2000 by ZiLOG, Inc. All rights reserved. No part of this document may be copied or reproduced in
any form or by any means without the prior written consent of ZiLOG, Inc. The information in this
document is subject to change without notice. Devices sold by ZiLOG, Inc. are covered by warranty
and patent indemnification provisions appearing in ZiLOG, Inc. Terms and Conditions of Sale only.

ZiLOG, Inc. makes no warranty, express, statutory, implied or by description, regarding the
information set forth herein or regarding the freedom of the described devices from intellectual property
infringement. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose.

The software described herein is provided on an as-is basis and without warranty. ZiLOG accepts no
liability for incidental or consequential damages arising from use of the software.

ZiLOG, Inc. shall not be responsible for any errors that may appear in this document. ZiLOG, Inc.
makes no commitment to update or keep current the information contained in this document.

ZiLOG's products are not authorized for use as critical components in life support devices or systems
unless a specific written agreement pertaining to such intended use is executed between the customer
and ZiLOG prior to use. Life support devices or systems are those which are intended for surgical
implantation into the body, or which sustains life whose failure to perform, when properly used in
accordance with instructions for use provided in the labeling, can be reasonably expected to result in
significant injury to the user.

ZiLOG, Inc.

910 East Hamilton Ave., Suite 110
Campbell, CA 95008

Telephone: (408) 558-8500

FAX: (408) 558-8300

Internet: http://www.zilog.com

UMO002801-COR1099

Z8/Z8PLUS C-COMPILER USER’S MANUAL

/ PREFACE

ABOUT THIS MANUAL

We recommend that you read and understand everything in this manual before setting up
using the product. However, we recognize that users have different styles of learning. Th
fore, we have designed this manual to be used either as a how-to procedural manual or «
erence guide to important data.

The following conventions have been adopted to provide clarity and ease of use:

® Universe Medium 10-point all-caps is used to highlight to the following items:

commands , displayed messages

menu selections, pop-up lists, button, fields, or dialog boxes
modes

pins and ports

program or application name

instructions, registers, signals and subroutines

an action performed by the software

icons

® Courier Regular 10-point is used to highlight the following items

bit
software code

— file names and paths

hexadecimal value

® Grouping of Actions Within A Procedure Step

Actions in a procedure step are all performed on the same window or dialog b
Actions performed on different windows or dialog boxes appear in separate ster

UMO002801-COR1099 iii

Z8/Z8PLUs C-CoMPILER USER’S MANUAL

o
OVO
,\,\ / TABLE OF CONTENTS
Chapter Title and Subsections Page
Chapter 1
Introduction
INTRODUCTION & 4 o vttt et e et e e e e e et e e e et e e e e 1-1
ZDS ENVIRONMENT ot ittt et et e et e e e e e e e e e e e 1-3
RUN-TIME MODEL .+ v v vttt e e e e e e e et e et e e et e e e e e e e e 1-3
MINIMUM REQUIREMENTS & & ittt ettt ettt et e e e e et e e e e e e e e 1-4
INSTALLING THE Z8/Z8PLUS C-COMPILER . .« v v vttt e ettt e e e e et e et 1-5
REGISTRY KEY S .ttt e e e e e e e e 1-5
INSTALLING ZDSo e e e e e e 1-6
TECHNICAL SUPPORT . v vttt et e e ettt e ettt e e e e e e e e e e e e e e 1-6
SAMPLE SESSION .« &t vt vttt et e e e e e 1-7
CREATE A PROJECT AND SELECT A PROCESSOR .« v vt vttt it ettt et e e 1-7
CONFIGURING THE COMPILER USING THEWIZARD . . .o oo ittt as 1-8
MANUALLY CONFIGURING THE COMPILER . . ittt et e i et e e e i e e e e 1-11
DOWNLOADING TO AN EMULATOR OR SIMULATOR . . .ottt i e i i i ieeee e e e e e 1-24
CONNECT TO THE EMULATOR .« & o v v v et ettt et e ettt e e e e e e e e e e 1-24
UMO002801-COR1099 Y

$
§
QA
Chapter Title and Subsections Page
Chapter 2
C-Compiler Overview
OVERVIEW . o oottt e e e e e e e e e e 2-1
LANGUAGE EXTENSIONS . . . o ottt e e e e e e e e e 2-2
ASSIGNING TYPES . .ottt 2-2
DEFAULT MEMORY QUALIFIERS . . o\ttt ettt e et e et et et e e 2-3
POINTERS. & o i ittt e e e et e e e e e e e e e e 2-4
STRUCTURE AND UNION MEMBERS ottt ettt e e e e et e e e e e e 2-4
SIZE OF POINTERS . & . ittt et et e e e e e e e e e e e e e 2-5
PRAGIMAS . . . 2-5
HPRAGMA INTERRUPT . . oottt sttt e e e e e e e e e e e e e 2-5
H#PRAGMA AT SADDRESS™ . ottt ettt et ettt et et e 2-6
HPRAGMA SFR SADDRESS™ . . ot ettt e et e e et e e e e e 2-6
USING THE DOS COMMAND LINE .« v vttt et et e et e et e et et et e e e 2-7
COMMAND LINE FORMAT . . ottt ettt e et e e e e e e e e e e e e e 2-7
COMMAND LINE SWITCHES . . . o ot ittt ettt et e e e e e e e e e 2-7
COMMAND LINE EXAMPLES . ..ottt i e e ettt e 2-9
OPTIMIZING FOR SIZE AND SPEED . . . o ittt ettt e et e e e e e e e e e e 2-10
DEBUGGING CODE AFTER OPTIMIZATION .+ .\ vttt vttt e et e et et e i eee e e 2-11
OPTIMIZATION DESCRIPTIONS . . o oottt ettt e e e et et e e e e e 2-11
UNDERSTANDING ERRORS -+« « v vt vt vt ettt e e et et e e et et et e e e ee e 2-13
ENABLING WARNING MESSAGES ottt ittt e e e e e e e e e 2-13
INCLUDED FILES . . .ttt ittt e e e e e e e e e e e e e e e e e 2-13
PREDEFINED NAMES . . . o ottt ittt e e e e e e e e e e e 2-13
GENERATED ASSEMBLY FILE . . . oo ottt e e e e e e e e e e 2-14
OBIECT SIZES. .+ v v it vttt et e e e e e 2-15
SECTION NAMES. . . . e e 2-15
INCORPORATING ASSEMBLY WITH C . . . e 2-16
INCORPORATING C WITH ASSEMBLY .+« v vt vt vt e et et e et et et e e e ee s 2-16
EXamples 2-16
Chapter 3
Linking Files
INTRODUCTION . . o ottt et e e e et e 3-1
WHAT THE LINKER DOES . . . ottt e e e e e e e 3-1

\Y UMO002801-COR1099

-<.°&
.\'oca~
v /
Chapter Title and Subsections Page
USING THE LINKER WITH THE C-COMPILER . .+« « o v vt et et e et ettt e e e i i ee e e 3-3
RUN TIME INITIALIZATION FILE . . . ottt e et et e 34
INSTALLED FILES + v v vttt et e e et et et e e e e e et e et e e e e e 3-4
INVOKING THE LINKER . . & ottt et e et e e et e e e et e e et e e e e e e e 3-6
USING THE LINKER IN ZDS e e e e e 3-6
USING THE LINKER WITH THE COMMAND LINE . . . ottt et et e it e e e e iie e e 3-7
MEMORY LAY OUT . .ttt e e e e e e e e e 3-8
LINKER SYMBOLS & o o vttt et e e et e e et e e e e e e 3-10
LINKER COMMAND FILE . ..ottt e e et e 3-11
LINKER COMMAND LINE . . .ottt e e e e e e e e 3-14
COMMAND LINE SPECIFICATIONS . &\ v vt ettt ettt e e ettt it 3-15
LINKER COMMAND LINE OPTIONS . ..o i ittt ettt et e e et 3-16
SYMBOL FILE IN ZILOG SYMBOL FORMAT i 3-17
USING THE LIBRARIAN . . ottt vt e et e e e e e et e e e e e e 3-17
COMMAND LINE OPTIONS . & vttt e e e e e e e e e e et e e e e e 3-18
Chapter 4
Run Time Environment
FUNCTION CALLS . o vttt ittt e et e e e e e e e e et e e e e e 4-1
FUNCTION CALL STEPS . ot ittt e e e e e e e 4-1
CALL FRAMES. . .t e e e e e 4-1
DYNAMIC CALL FRAMES . .t vt ettt et e et et e e e e e e e e e e 4-2
RESPONSIBILITIES OF A CALLED FUNCTION . . . ottt e e e e e e e e 4-3
SPECIAL CASES FOR A CALLED FUNCTION . oo vt ittt e et e e e e e et e e e 4-3
STATIC CALL FRAMES . . . ittt e e e e e e e 4-4
USING THE RUN-TIME LIBRARY o oo e et et 4-6
INSTALLED FILES . v vttt ittt et et et e et et e e e e e e e e 4-6
LIBRARY FUNCTIONS. .« .ttt et et et e e e e e e et e e e e e 4-8
_ASM FUNCTION &ttt et et e e e et e e e e e e e e e e e e 4-8
ADS FUNCTION . .ottt ettt e e e e e e e e e e 4-8
atof, atoi, atol FUNCTIONS e e e e e e 4-9
LI FUNCTION .ot e e e 4-10
IV FUNCTION .t e e e e 4-10
B I FUNCTION ottt ettt e e e e e e e e e e e e e e 4-11
labsS FUNCTION 4-12
MEMCHI FUNCTION . .ottt e e e e e e 4-13

UMO002801-COR1099 Vii

.<,°‘°
00‘
,\',\\')
Chapter Title and Subsections Page
MEMCMP FUNCTION ottt et e et e e e e e e e ettt e e 4-13
MEMCPY FUNCTION . .ottt ettt e e ettt e e et e e e 4-14
MEMMOVE FUNCTION . o ottt e e e e e e e e e e e e e e e e 4-14
MEMSEE FUNCTION . . ottt e e e e e e e e e e ettt e e e e e e 4-15
FANA FUNCTION .« vttt ettt e e e et e e e e e e e e e e e 4-15
_SELVECTON FUNCTION .\ttt ettt e e e e e e e e e et e e ettt e e 4-16
SFANA FUNCTION .\t ottt e e e e e e e et e ettt e et e e e e e e e e 4-17
SIICAt FUNCTION . . oottt et et e e e e e e e e e e e e e e e e e e 4-17
SEICNF FUNCTION . o ottt e et e e e e e e e e e e e e e 4-18
SEFCMP FUNCTION & & ot e e e e e e e e e e e e e e e e e e e 4-19
SIICPY FUNCTION . . oottt e e e e e e e e e e e e e 4-20
SEICSPN FUNCTION . o ottt ettt e et et e e e e e e e e e e e 4-20
SHHlEeN FUNCTION . .. e e e e e e 4-21
SIINCAL FUNCTION . . oottt et e e e e e e e e e e e e e e e e e e e 4-21
StINCMP FUNCTION . o oottt ettt et e e et e e e e e 4-22
SEINCPY FUNCTION . ot ettt e e e e e e e e e e e e e e 4-23
SEITCHE FUNCTION . . e e e e e 4-24
SEISPN FUNCTION . . oottt ettt e e e e e e e e e e e e e 4-24
SEESEE FUNCTION .o\ ottt e e e e e et e e e e e e e e e s 4-25
SEHEOK FUNCTION . . ottt e et e e et e e e e e e e e e e 4-26
strtod, strtol, StrtoUul FUNCTIONSot e e e 4-27
tolower, toUPPEr FUNCTIONS . ..ottt ittt e et e e e e e et e e 4-29
va_arg, va_end, va_Start FUNCTIONSttt i e e 4-30
Appendix A
Initialization and Link Files
Z8 LARGE IMODEL. . .\ttt ittt e e e e e e e A-1
INTIALIZATION FILEo e e e A-1
LINK FILE oo e e e e A-6
Z8 SMALL MODEL . . .ttt ettt e e A-7
INITIALIZATION FILE . . o it A-7
LINK FILE &t vttt e e e e e e e e e e e e A-12
8 PLUS . . A-13
INITIALIZATION FILE oottt e e e e e e A-13
viii UMO002801-COR1099

Chapter Title and Subsections

Appendix B
ASCII Character Set

Appendix C
Problem/Suggestion Report Form

Glossary
Index

UMO002801-COR1099

Z8/Z8PLUS C-COMPILER USER’S MANUAL

&Y
'\3‘\'
LIST OF TABLES

Table Page
TABLE 2-1 DEFAULT MEMORY QUALIFIERS . & . & it ittt e et e e e et e e e et e e e e 2-3
TABLE 2-2 COMMAND LINE SWITCHES . & o & ittt e e e et e e e e e et et e e e et e 2-7
TABLE 3-1 LINKER REFERENCED FILES . . o v vttt et et e e et e e e e e e e e e e e e e e 3-5
TABLE 3-2 LINKER SYMBOLS . .« i ot ittt et e e e e e et e e e e e e e e e e e 3-10
TABLE 3-3 SUMMARY OF LINKER COMMANDS . . o o vttt e et et e e et et et et e 3-11
TABLE 3-4 SUMMARY OF LINKER OPTIONS . . .ottt ettt et e et e et e et e et e e 3-16
TABLE 3-5 SUMMARY OF LIBRARY OPTIONS . .t it ittt ettt et e e e e e et e e 3-18
TABLE 4-1 INSTALLED LIBRARY FILES . . . ittt e e e e e et e e e e 4-6
TABLE B-1 ASCIH CHARACTER SET .ttt ottt et et e et e e et e e e e e e e B-1

UMO002801-COR1099 iX

Z8/Z8PLUS C-COMPILER USER’S MANUAL

/ /
o
)
A /
LIST OF FIGURES

Figure Page
FIGURE 1-1 DEVELOPMENT FLOW . . & v vttt e et e et e et ettt et e e e 1-2
FIGURE 1-2 NEW PROJECT DIALOG BOX . . s o v vt e e ettt ettt e e e e e e e e e e 1-7
FIGURE 1-3 SELECT MEMORY MODEL DIALOG BOX .+« o v vttt e et et e et e e e et e e e e 1-8
FIGURE 1-4 ZDS NEW PROJECT DIALOG BOX .+« « v o vttt e ettt e e e e e e e e e e 1-9
FIGURE 1-5 INITIALIZATION FILE IN PROJECT VIEWER WINDOW\ oii it ettt e e e e e e e as 1-9
FIGURE 1-6 INSERT FILES INTO PROJECT DIALOG BOX . . o« vt vttt ettt et e e e e e e 1-11
FIGURE 1-7 PROJECT VIEWER WINDOW WITH FILES .« o o vttt e e et e e e e e e i iie e e 1-12
FIGURE 1-8 C-COMPILER GENERAL PAGE. . . .« ottt ettt ettt e e e e e e e e 1-14
FIGURE 1-9 C-COMPILER WARNING PAGE ettt ettt et e e e e e e e e e 1-16
FIGURE 1-10C-COMPILER OPTIMIZATIONS PAGE o i ittt ettt e e e e e 1-18
FIGURE 1-11C-COMPILER PREPROCESSOR PAGE. ottt ettt e e e e e e e e e e 1-19
FIGURE 1-12C-COMPILER MEMORY PAGE.ttt ettt e et e e e et 1-21
FIGURE 1-13SECTION NAME GENERATION PAGE o ittt it e e e e e e e 1-23
FIGURE 3-1 LINKER FUNCTIONAL RELATIONSHIP. . . . o ottt et e e e e e e e e e e e e e as 3-1
FIGURE 3-2 LINKER COMPONENTS . . ittt ettt ettt e ettt e e e e et e e e e 3-3
FIGURE 3-3 RFILE MEMORY LAYOUT . . ittt ettt ettt e et e e e e e e e 3-8
FIGURE 3-4 XDATA MEMORY LAYOUT . . . ottt et e ettt e et e e e e e e e e 3-9
FIGURE 3-5 SAMPLE SYMBOL FILE . . . oo e 3-17
FIGURE 4-1 FRAME LAYOUT FOR THE LARGE MODEL . .\ v v vttt it e et et e e e e e 4-2
FIGURE 4-2 L FUN FRAME LAYOUT .\ ittt ettt ittt e ettt ettt e e e e 4-4
FIGURE 4-3 .P_FUN FRAME LAYOUT . . ittt ettt et ettt ettt ettt e e e e 4-5

UMO002801-COR1099 Xi

. Z8/Z8PLuUs C-COMPILER USER’S MANUAL

&Y
O CHAPTER 1
N
,\,\ / INTRODUCTION
INTRODUCTION

The Z8/28Plus C-Compiler conforms to the ANSI’s definition of a “freestanding implemer
tation”, with the exception that doubles are 32 bits. In accordance with the definition of a
freestanding implementation, the compiler accepts programs which confine the use of th
features of the ANSI standard library to the contents of the standard headers <float.h>, <
its.h>, <stdarg.h> and <stddef.h>. This release supports more of the standard library tha
required of a freestanding implementation, as described in Chapter 4, Run Time Environ
ment. The compiler also supports both dynamic and static frames.

There are several language extensions supported in this version, including interrupt functi
and memory space accesses.

UMO002801-COR1099 1-1

=

&

sgo

K
A | Introduction

Introduction

COFF

Archiver | Object Files

C Source
Files
Agsembler ©
Source :
Compiler
Asgsembler
Assembler | S

Linker Command
Files

Libraries of by Linker
COFF o
Object Files T
COFF Load
File

COFF Caonversion
Dumper LItility

FIGURE 1-1. DEVELOPMENT FLOW

1-2

UMO002801-COR1099

Introduction Introduction > /

ZDS ENVIRONMENT

ZiLOG Developer Studio is an integrated development environment with a standard Win-
dows 95/98/NT user interface that allows access to all of ZiLOG’s development tools withc
having to alternate from one program to another. These development tools include a langt
sensitive editor, project manager, assembler, linker, and a symbolic debugger. ZDS supp
the entire Z8, Z8PIlus, and DSP families of ZiLOG processors.

ZDS allows the user to:
* Create project files and add or remove files to and from the project
* Create and edit a source file.
* Download, execute, debug, and analyze code
* Build and link a project file
* Compile, assemble and link files

® Prepare code for ROM release (one-time programming)

RUN-TIME MODEL

The compiler provides two memory models, small and large. In the small memory model 1
stack and data is stored in the register file. In the large model the stack and data is store
external data memory. For the small memory model two call frames are supported; static
dynamic. Long is 32 bits, Int is 16 bits, address to register file is 8 bits and all other addres
are 16 bits. The following startup programs are included:

* For Z8, thez8inits.s (small model initialization file) and th&8initx.s (large
model initialization file)

* For Z8Plus, th&8plusinit.s (small model initialization file)

These programs clear the .bss section, set the register pointer and port mode registers, ¢
main and copy the initialized data.

UMO002801-COR1099 1-3

=

&

sgo

o
o
&Y | Minimum Requirements Introduction

MINIMUM REQUIREMENTS

For the C-Compiler to run properly with ZDS, the host system must meet the following min-
imum requirements:

* The Z8/Z8Plus compiler requires Windows95 or Windows/NT. The compiler
generates assembler language source, which can be assembled and linked using the
UNIX, DOS or Windows versions of the ZiLOG assembiler, archiver and linker.

* |IBM PC (or 100-percent compatible) Pentium-based machine
* 75MHz,16MB Memory

* VGA Video Adapter

* Hard Disk Drive (12 MB free space)

e CD-ROM drive

* Mouse or Pointing Device

® Microsoft Windows 95/98/NT

To use the ZDS debugger, an emulator is heeded that corresponds to the processor
required for configuration

1-4 UMO002801-COR1099

/
.°°$

&

Qo
Introduction Installing the Z8/Z8Plus C-compiler 4%)

INSTALLING THE Z28/Z8PLUS C-COMPILER

To install the Z8/Z8Plus C-Compiler, insert the Z8/Z8Plus C-Compiler CD ROM and follov
the onscreen prompts

After installing the Z8/Z8Plus C-Compiler, the compiler’s installation path is set in the Wir
dow’s registry. When installing ZDS 3.00 or later, ZDS automatically looks for the C-Com:
pilers installation path and loads the corresponding DLL from that path.

This is effective for the following compiler versions:
® 7380 10.00 or later
* Z3xx B0.00 or later
e 78 C1.00 or later

Note: Older compiler versions require the user to copy the compiler's DLLs to the ZDS installatior
directory.

REGISTRY KEYS
The following keys are written to the window’s registry during the C-compiler installation:

® For Z380 Installation
— + HKEY_LOCAL_MACHINE\Software\ZiLOG\C Compiler\Z380
— + Z380 Key has Path value which tells where the 2380
is located
* For Z3xx Installation
— + HKEY_LOCAL_MACHINE\Software\ZiLOG\C Compiler\Z3xx
— + Z3xx Key has Path value which tells where the Z3xx is
located
® For Z8/Z8Plus Installation
— + HKEY_LOCAL_MACHINE\Software\ZiLOG\C Compiler\z8

— + Z8 Key has Path value which tells where the Z8 is
located

UMO002801-COR1099 1-5

=

&

sgo

&
o
&Y | Installing ZDS Introduction

INSTALLING ZDS

Perform the following steps to install ZDS:

1. Insert the ZiLOG Developer Studio CD-ROM into the host CD ROM drive. The Emulator
Software Setup window appears.

2. In theSelect Components dialog box check ZiLOG Developer Studio.
3. Click Next. The ZiLOG Developer Studio window appears.

4. Click Next to accept the licensing agreement. Immediately after the agreement is
accepted, th€hoose Destination Location dialog box appeatrs.

5. Click Next to install ZDS in the default directory. Cliékowse to change the ZDS
install directory.

6. After selecting the appropriate install directory, click next. $ekect Program Folder
dialog box appears.

7. Click Next to add the ZDS program icon to the ZiLOG Developer Studio program folder.
To create a personalized folder, type the folders name iPrtigram Folders field.

8. Click Next. Thelnstalling ZDS Program Files progress bar appears.

9. Afterinstallation, th&etup Complete dialog box appears. CheWkew README File
to view the read me file containing the ZDS release notes. Qlzaokch ZiLOG
Developer Studio to start ZDS at the end of the installation.

10. Click Finish to complete the ZDS installation.

TECHNICAL SUPPORT

Technical support for ZDS or the C-Compilers can be accessed on the web or by phone. The
Zilog Internet Home Page address is http://www.zilog.com.

To get the latest software upgrades for ZDS, go to the ZDS home page and select Download-
able Software from the main menu.

To get the latest software upgrades for the Z8/Z8Plus C-Compiler, contact tools@zilog.com.

ZILOG has a worldwide customer support center located in Austin, Texas. The customer
support center is open from 7 a.m. to 7 p.m. Central Time. The customer support toll-free
number for the United States and Canada is 1-877-ZiLOGCS (1-877-945-6427). For calls
outside of the United States and Canada dial 512-306-4169. The FAX number to the cus-
tomer support center is 512-306-4072. Customers can also E-mail the support center at csup-
port@zilog.com

1-6

UMO002801-COR1099

Introduction Sample Session 4 /

SAMPLE SESSION

The Z8/28Plus C-Compiler is a modular component that is part of the ZDS development
environment. Users should become familiar with ZDS and configure the settings before
gramming or downloading files. This chapter orients the user on using ZDS and configuri
the compiler for the Z8/Z8Plus family of processors. For more information on installing
ZDS, consult the ZDS Quick Start Guide or the ZDS on-line help.

CREATE A PROJECT AND SELECT A PROCESSOR

The user must create a project and select a processor before creating or opening a C-file
form the following steps to create a new project and select a processor :

1. Open ZDS by selectingtart>Programs>Zilog Developer Studio> ZDS.

2. ChooseéNew Project from theFile menu. TheNew Project dialog box appears. See
Figure 1-2.

Mew Project

— Target Selection

Selection by
[% Family ¢ Application Cancel |
b aster Chip Data |
IZS j [itral Settings: |
Project T arget: Ernulator:
|za6C38 x| |zeeceznozEm ¢
— Project Mame Project type——
[C-\Program Files' ZLOG'ZDS_3.8snena . | = &pplication
 Library
| ¥ dnclude default startup files for C Compiler | " OTP Only

FIGURE 1-2. NEW PROJECT DIALOG BOX

3. Selectramily in theSelection by field.

4. For Z8, seled8 from theMaster pop-up list. For Z8Plus, select Z8Plus from the Master
pop-up list.

5. Select the processor from tReoject Target pop-up list.
6. Select an emulator or simulator from #Emulator pop-up list.

7. Click on the browse buttgn.) in theProject Name field. TheNew Project Browse
dialog box appears.

UMO002801-COR1099 1-7

=

£

sgo

o
o
&Y | Sample Session Introduction

8. Enter the file name and select a path inNlesv Project Browse dialog box.

9. ClickSave. The file name appears in tReoject Name field in theNew Project dialog
box.

10.SelecApplication from theProject type field. This selection enables the linker.

11.ChecKnclude default startup files for C Compiler. This option must be checked to
enable the Wizard. To manually add the necessary files for the C-Compiler, see Manually
Configuring the Compiler on page 1-11.

12.Click onChip Data to view specifications for the selected Project Target.
Norte: Fields in the Chip Data page are read-only and can not be modified.

13.Click OK. The new project is saved with the file name specified ifNin Project
Browse dialog box.
CONFIGURING THE COMPILER USING THE WIZARD

The Wizard is enabled when theclude default startup files for C Compiler option is
checked in the New Project dialog box.

NoTe: The Wizard is only available for ZDS version 3.5 and later. To configure the compiler to run
with static frames you must use the small model.
Perform the following steps after clicking OK in tRew Project Browse dialog box:

1. Select eitheBmall Model or Large Model in the Select Memory Model Dialog box,
see Figure 1-3lo use static frames seléggmall Model.

NoTe: Only the small model is available for the Z8Plus.

Select Memory Model I

& Small Model. Stack and data reside in intemal memary

" Large Model, Stack and data reside in external memory

Cahicel |

FIGURE 1-3. SELECT MEMORY MODEL DIALOG BOX

2. Click OK. The ZDS New Project Dialog box appears. See Figure 1-4.

1-8 UMO002801-COR1099

(&)
Introduction Sample Session 4 /

ZDS Mew Project

Check the filez you wigh to include | ok I

libc.fib
Cancel |

File Description:
Standard C libramy

— Settingsz
v Add default include path to compiler settings

¥ Set default linker settings for compiler

FIGURE 1-4. ZDS NEW PROJECT DIALOG BOX
Note: For Z8Plus thes file is Z8plusinit.s

. Select the files ti include in ti@heck the files you wish to include window. For more
information on which files to include see Installed files on page 3-4.

. SelectSet default include path to compiler settings in the Settings window.
Selecting this option sets the path of the include files iAtdditional include
directories field in the C-Compiler preprocessor page.

5. SelectSet default linker settings for compiler.

. Click OK. The initialization file for the selected model appears in the project viewer
window. See Figure 1-5.

= [@' C:%Program Files'\ZiL0O
E| £5 Source Files

: 28inits. ¢
o [g Dependencies

r—
=] Fileview |

FIGURE 1-5. INITIALIZATION FILE IN PROJECT VIEWER WINDOW

UMO002801-COR1099

=

&

sgo

o
o
&Y | Sample Session Introduction

Enable Static Frames
Perform the following additional steps to enable static frames:

1. To use static frames selddemory from theCategory pop-up list in the C-Compiler
Settings Options dialog box. The Memory page appears.

2. Select th&tatic Frame options. If theStatic Frame option is not enabled then select a
small memory model in th®lemory Model Selection window, see Figure 1-12.

3. Click Apply.

Create a File
Perform the following steps to create a new C file :

1. SelectAdd to Project>New from the Project menu. The msert New Files Into
Project dialog box appears.

2. SelecC Files from theFiles of type pop-up menu.
3. Type a file name in thieile Name field.

4. Click Open. The new file name appears in the Project Viewer window with auffix,
and a blank Edit window also appears.

5. Type the following code in the edit window:
#include <stdlib.h>

int randnum;

int main()

{
srand(10);
randnum=rand();
randnum=rand();

}

6. Close and save the file.

Note: Skip the Manually Configuring the Compiler section if you configured the compiler using the
wizard.

1-10 UMO002801-COR1099

Introduction Sample Session 4 /

MANUALLY CONFIGURING THE COMPILER
The user can manually add files and configure the settings for the C-Compiler.

After creating a project the user must add or create new files. A previously created projec
has the following attributes saved with it:

* Target settings
* Assembler and Linker settings for the specified target
* Source files (including header files)

The user must first add the necessary files for the compiler to function properly. The follo
ing examples are based on using a small model.

Perform the following steps to add files:
1. SelectOpen Project from the File menu. Th®pen Project dialog box appears.

2. IntheOpen Project dialog box, seledhe project that was created in the previous
exercise. The project appears in Breject Viewer window.

3. SelectAdd to Project>Files from theProject menu. Thdnsert Files into Project
dialog box appears. See Figure 1-6.

Lookjn |3 b =l =1
%] lbe.ib 2Biinits. s [28

libellib ZBirits. o [28

libfz lib Bt s

libf2l iy [28p

libz. it Bplusinit.a

z8inits.o 28plusinit. s

Files of ype: IAIIFiIes[“."] j Cancel |

FIGURE 1-6. INSERT FILES INTO PROJECT DIALOG BOX

4. Browse to the directory where the C-Compiler was installed.
5. Select the Lib directory.
6. Selectll files from theFiles of type pop-up menu.

UMO002801-COR1099 1-11

=

&

ogo

o
o
&Y | Sample Session Introduction

7. Hold theControl key and select the following files:

— For Z8, selecE8inits.s (C run time initialization file)

— For Z8Plus, sele@8plusinit.s (C run time initialization file)

— To use dynamic frames for the Z8 or Z8Plus small memory model select
libz.lib (integer arithmetic library), libc.lib (C library) and
libfz.lib (floating point arithmetic library)

— To use static frames for the Z8 small memory model skibedib (integer
arithmetic library), libcst.lib (C library) andlibfzst.lib (floating
point arithmetic library)

— To use the large memory model for the Z8 sdileztlib (integer arithmetic
library), libcl.lib (C library) andlibfzl.lib (floating point arithmetic
library)

NoTe: The large memory model is only available for the Z8. Static frames are only available for the
Z8 small memory model.

8. Click Open. The files appear in the Project Viewer window. See Figure 1-7.

x|

= @ Cihbest.zws
=~ &5 Source Files
C:\Program Files\C-librariez\betahib\z8inite.
C:\Program FileshC-libraries\betahibhlibe. ib
; C:%Program Files\C-ibraries\betasib\ibz. ib
[y Dependencies

" = Fileview I

FIGURE 1-7. PROJECT VIEWER WINDOW WITH FILES

Note: For Z8Plus, the8init.s file is replaced by th&8plusinit.s file.

9. SelectAdd to Project>New from theProject menu. Themsert New Files Into
Project dialog box appears.

10.SelecC Files from theFiles of type pop-up menu.

11.Type a file name in th@le Name field.

12.ClickOpen. The new file name appears in the Project Viewer window with auffix,
and a blank Edit window also appears.

13.Type the following code in the edit window:
#include <stdlib.h>

1-12 UMO002801-COR1099

é.
(&)
Introduction Sample Session 4 /
int randnum;
int main()
{
srand(10);

randnum=rand();
randnum=rand();
}
14.Close and save the file.
15.SelectUpdate All Dependencies from theBuild menu. The Dependencies folder list
in the Project Viewer window is updated.
Configure Settings

The Z8/28Plus C-Compiler can be configured through the Settings Option dialog box in
ZDS. The Settings Option dialog box allows the user to configure:

* General options
* Optimization levels
* Preprocessor symbol definitions
® C-Compiler memory locations
® Section names
Perform the following steps to open the C-Compiler Settings Option dialog box:
1. Open the project.
2. SelectSettings from theProject menu. The Settings Options dialog box appears.
3. Click theC-Compiler tab. The C-Compiler Settings Option dialog box appears.

UMO002801-COR1099 1-13

=

&

sgo

o
o
&Y | Sample Session Introduction

General Configuration
The C-Compiler General page allows you to enable or disable settings for the C-Compiler.
Perform the following steps to configure the General Page .

1. SelectGeneral from theCategory pop-up listin the C-Compiler Settings dialog box. The
C-Compiler General page appears. See Figure 1-8.

2. Click theSet Default button.
3. Click Apply.

Sotings Opions |

. Compiler |.t’-‘«ssembler| Linker | Debugger |

Cateqgary: IGeneraI j

¥ Generate debug information

™ Display compiler wersion number

[~ Generate code for stack overflow check
W Enable ZILOG language extensions

[dnclude C zource in generated azsembly

Lirker Setting
Set the default linker settings needed by the compiler. Any

current linker zettings will be remowved.
Set Default |
QK I Cancel | Apply | Help |

FIGURE 1-8. C-COMPILER GENERAL PAGE

1-14 UMO002801-COR1099

Introduction Sample Session 4 /

The following options are available in the C-Compiler General page.

* TheGenerate debug information option generates symbolic debug information
in the output object module. If a relocatable object file is being generated, symbols :
other debugging information are embedded in the output relocatable object file. If t
option is not checked, no symbolic debug information is genenétinis option is
checked, optimizations are not perfornddfault setting).

* The Display compiler version number option causes a two-line message to
display in the Output window showing the copyright notice and version number.

* TheGenerate Code for stack overflow check option causes the C-Compiler to
automatically write code that checks for memory stack overflows.

* The Enable ZiLOG language extensions option causes the C-Compiler to
recognize// style comments (default setting)

* The IncludeC Source in generated assembly option causes the C-source code
to be included in the assembly file. This option only works wherGieerate
debug information option is selected.

* The Set Default button automatically configures the linker for use by the C-
Compiler.

UMO002801-COR1099 1-15

=

&

sgo

o
o
&Y | Sample Session Introduction

Warning Options

The C-Compiler Warning page allows you to select which C-Compiler warning messages are
displayed in the ZDS output window.

Perform the following steps to configure the Warning Page.

1. SelectWarnings from theCategory pop-up list in the C-Compiler Settings dialog box.
The C-Compiler Warning page appears. See Figure 1-9.

2. Select the warning messages to apply.
Note: TheWarning messages option enables all the warning messages regardless of whether a
warning is checked or not.

3. Click Apply.

Setting: Options I

C Compiler |.-'3.ssemblel| Linkerl Debuggerl

Category: |

—Enable
v “waming messages [Sict warmings
[T Accuracy Joss in conversions " Paortabiliy warnings

[Unreachable break statements [Mop-AMS| usage
[Unuzed variable ™ Unuzed parameters
™ Function return values ™ Unused global objects

™ Some heuristic warmings

Ok I Cancel Apply Help

FIGURE 1-9. C-COMPILER WARNING PAGE

1-16 UMO002801-COR1099

Introduction

Sample Session 4 /

The following options are available in the C-compiler Warnings page.

Warning Messages - enables all warning messages

Accuracy loss in conversions - enables portability warnings about accuracy loss
in conversions

Unreachable break statements - enables warnings about unreachable breal
statements

Unused variable - enable warnings about variable usage, such as unused variat
defined but not used, etc.

Function return values - enables warnings about function return values
Some heuristic warnings - enables some heuristic warnings
Strict warnings - enables strict warnings

Portability warnings - enables portability warnings, and warnings about handling
enumeration types

Non-ANSI usage - enables warnings about non-ANSI usage

Unused parameters - enables warnings about unused parameters (not included
-Wd)

Unused global objects - enables warnings about unused global objects

UMO002801-COR1099 1-17

=

&

sgo

o
o
&Y | Sample Session Introduction

Configuring Optimization Levels

The C-Compiler Optimizations page allows you to select an optimization level for the C-
compiler. See Optimizing for Size and Speed on page 2-10 for a detailed description of the
different optimizations.

Perform the following steps to configure the Optimizations page .

1. SelecOptimizations from theCategory pop-up list in the C-Compiler Settings Options
dialog box. The Optimizations page appears. See Figure 1-10.

2. Selecttnable optimization.

3. Select eitheBpeed or Size in the Speed Size Optimization window. For a detailed
description of speed or size optimizations see Optimizing for Size and Speed on page 2-10.

4. Click Apply.

Settings Options

C Compiler |.&ssembler| Linkerl Debuggerl

Cateqgary: IDptimizations j
: [Dizable strength reduction
[™ Disable loop irvariant [Disable dead code removal
[Dizable loop fuse [Dizable dead block removal
™ Disable loop-unraling [" Dizable dead objsct removal
[Disable tail recursion [Disable copy propagation
[Disable function-inline [Disable constant propagation
[" Dizable block merge [Disable chain flaw [jump to jump)

™ Dizable loop strength
[Disable common sub-expression elimination
™ Separate working register group for interrupts

Speed/Size Optimization
™ Speed % Size

oK I Cancel | Spply | Help |

FIGURE 1-10. C-COMPILER OPTIMIZATIONS PAGE

NoTe: For more information on the optimization choices, see Optimization Descriptions on
page 2-11.

1-18

UMO002801-COR1099

Introduction Sample Session 4 /

Defining Preprocessor Symbols

The C-Compiler Preprocessor page allows you to define preprocessor definitions, and sy
ify additional search paths for included files.

Perform the following steps to configure the Optimizations page.

1. SelectPreprocessor from theCategory pop-up list in the C-Compiler Settings dialog
box. The Preprocessor page appears. See Figure 1-11.

2. In theAdditional Include Directories field enter the C-Compiler’s installation path
and\INCLUDE.

For example: If the compiler’s installation path 8:\PROGRAMS\Z8 enterc:PRO-
GRAMS\Z8\INCLUDE.

3. Click Apply.

Settings Options

L Compiler |.-’-‘«ssemb|er| Linker I Debuggerl

Category: |[{MEer

[™ Generate preprocessed output files [filez). Mo source iz compiled

Preprocessar definitions:

Additional inchude directaries:

IE:'\F'rogram FileshZIL0GY28CC_G1.004nclude |

-g - C:MProgram FileghZiLOGYE30C_GT. 000 nclude -Me -ZILOG A ;I
-0

[]
ak I Cancel | Apply | Help |

FIGURE 1-11. C-COMPILER PREPROCESSOR PAGE

UMO002801-COR1099 1-19

The Preprocessor page has the following fields and options:

The Generate preprocessed output file option causes the compiler to only
generate a viewable preprocessed file. An assembly or hex file is not generated whe
this option is checked.

ThePreprocessor definitions field is used to define the names of the symbols that
are used by the preprocessor. Symbols may be defined with or without a value anc
successive symbols should be separated by a comma.

ExampLe: DEBUG,VERSION=3 defines the symbol DEBUG, but does not
assign it a value. The statement also defines the symbol VERSION and assigns it
a value of 3.

The Additional Include Directories field is used to enter additional search paths
the C-Compiler should use to locate included files. The search path can consist o
directory names separated by semicolons.

ExampLe: C\PROGRAMS\ZDS\INCLUDE:LIB

Introduction Sample Session 4 /

Memory Configuration
The C-Compiler Memory page allows the user to define where the stacks and data resid
Perform the following steps to configure the Memory page.

1. SelectMemory from theCategory pop-up list in the C-Compiler Settings dialog box.
The Memory page appears. See Figure 1-12.

2. Select th&small model. Stack and data reside in register file option
3. Click Apply.

Settings Options t

L Compiler |.-’-‘«ssemb|er| Linker I Debuggerl

Categony: [{GENeM

—Frame Selection—————————
= Dynamic Frame . Static Frame

— Memaory Model Selection

" | arge model. Stack and data reside in extemal data memory.

" Large model. The constant stings are allocated in code memany.
The stack and other data rezside in external data mermarny.

* Small model, Stack and data reside in register file.

= Small model. The constant stings are allocated in code memory.
The stack and other data rezide in register file.

Ok I Cancel Apply Help

FIGURE 1-12. C-COMPILER MEMORY PAGE

UMO002801-COR1099 1-21

=

&

ogo

o
o
&Y | Sample Session Introduction

The following options are available in the C-Compiler memory page.

* Frame Selection
— Dynamic Frame—Stack memory is allocated for frames during run-time.
— Static Frame— Function frame are allocated in memory during the link process
(for the Z8 small model only).
* Memory Model Selection window
Large model. Stack and data reside in external data memory.

Large model. The constant strings are allocated into code memory.
The stack and other data reside in external data memory.

Small model. Stack and data reside in register file.

Small model. The constant strings are allocated in code memory. The
stack and other data reside in register file.

NoTe: For more information the difference between dynamic and static frames and the different mem-
ory models see Call Frames on page 4-1.

1-22 UMO002801-COR1099

Introduction Sample Session 4 /

Rename a Section xName
The C-Compiler Section Name Generation page allows the user to rename section name
Perform the following steps to rename a section name.

1. SelectSection Name Generation from theCategory pop-up list in the C-Compiler
Settings dialog box. The Section Name Generation page appears. See Figure 1-13.

2. Enter the section’s new name in the field next to the section’s name. Sections can be
renamed any valid segment name. For section name descriptions see Section Names
page 2-15.

3. Click Apply.

Settings Options E2

Compiler |.&ssembler| Linker I Debuggerl

Cateqary: ISection Marme Generation ﬂ

— Changed Section name

_ptest: I

nidata: I

nbss: I

-hdatae: I

hbsse: I

_mdata: I

mbss I

Ok I Cancel Apply Help

FIGURE 1-13. SECTION NAME GENERATION PAGE

UMO002801-COR1099 1-23

=

&

sgo

o
o
&Y | Sample Session Introduction

DOWNLOADING TO AN EMULATOR OR SIMULATOR

Before performing a debug session the user must compile the code and connect to the emula-
tor. For more information on performing a debug session, see the ZDS Quick Start Guide or
the ZDS on-line help.

Compile a Project
Perform the following steps to compile a project.

1. Open the previously project created.

2. In the Project Viewer window, double click on the C file that was created earlier in the
session. The C file appears in the Edit window.

3. SelecBuild from theBuild menu (the shortcut is F7) to compile, and link the files in the
project.If an error occurs, double click on the error in the Output window .

NoTe: When building a project, ZDS only processes the files in the project that have changed since
the last build. During a build, ZDS updates a dependency list for the project by adding each included
filename to the project list.

CONNECT TO THE EMULATOR
Perform the following steps to connect to the emulator.

1. SelectConnect from theProject menu. The ZDS status bar shows that it's connecting
to the Emulator.

2. The messagemulator connected appears in the Output windddebug page.

NoTe: If an error message is received, ensure that both the target and emulator for the project are
selected.

1-24 UMO002801-COR1099

Z8/Z8PLUS C-COMPILER USER’S MANUAL

CHAPTER 2
/ C-COMPILER OVERVIEW

OVERVIEW

The Z8 C compiler is an optimizing compiler that translates standard ANSI C programs ir
ZiLOG assembly language source code. Key characteristics of the compiler are:

Supports ANSI C language - ZiLOG's C-Compiler conforms to the ANSI C standard
as defined by ANSI specifications for a free standing implementation.

Assembly output - The compiler generates assembly language source files that c
be viewed and modified.

Provides ANSI-standard run-time libraries - A run-time library for each device is
included with the compiler’s tools. All library functions conform to the ANSI C library
standard. These libraries include functions for string manipulation, buffe
manipulation, data conversion, math, variable length argument lists.

COFF obiject files - Common object file format (COFF) is used. This format allows
the user to define the system’s memory map at link time. This maximizes performal
by linking C code and data objects into specific memory areas. Source-level debug
is also supported by the COFF file format.

Friendly assembly interface - The compilers calling conventions are easy to use an
flexible. These calling conventions allow the user to easily call assembly and
functions.

Preprocessor integration - The compiler front end has a built in preprocessor fol
faster compilation.

Optimization levels - The compiler allows the user to select optimization levels the
employ advanced techniques for compacting and streamlining C code.

Language extensions - Language extensions are provided to support process
specific features.

— Memory spaces are supported through memory qualifiers.

UMO002801-COR1099 2-1

=

&

sgo

o
o
&Y | Language Extensions C-Compiler Overview

— Support for interrupt functions is also available.

* Intrinsic functions - Intrinsic functions are provided for inline assembly, setting
interrupt vectors and enabling and disabling interrupts.

LANGUAGE EXTENSIONS

The Z8/28Plus family of processors are analog based processors that rely heavily on mem-
ory allocations. The C-language, without extensions, is only capable of placing data in one
memory location. The C-Compiler memory extensions allow the user to assign data to either
internal data memory (RFILE), ROM, or external data memory (XDATA)

ASSIGNING TYPES

Types are extended by adding memory qualifiers to the front of a statement. These memory
qualifiers are defined with the key words

* R assigns the type to the register file (RFILE) memory space. In a small memory
model the default memory space for data is RFILE memory space.

®* P assigns the type to code memory space (ROM).

®* _ M assigns the type to XDATA. In a large model the default memory space for data
is XDATA.

A derived type is not qualified by memory qualifiers (if any) of the type from where it was
derived. Derived types can be structures, unions and function return types.

Example: R int num

numis memory qualified by R and is found in RFILE.

Example: __P char arr [10]={2,4,6,8,10,12,14,16,18,20}

arr is memory qualified by P and all the elements cdrr are found in ROM.

Example: M unsigned char val;

val is memory qualified by M and is found in XDATA.

Example: __R char * ptr;

ptr is a pointer tchar in RFILE memory. ThePtr is not memory qualified but is a
pointer to a qualified memory type.

2-2

UMO002801-COR1099

C-Compiler Overview Language Extensions 4 /

Example: Char *__R ptr;

ptr is a pointer to char. Thgr is a memory qualified type and is found in RFILE.

DEFAULT MEMORY QUALIFIERS

Default memory qualifiers are applied if no memory qualifiers are specified. The default
memory qualifier depends on the memory model chosen. See Table 2-1 for the default r
ory qualifiers for each model type.

TABLE 2-1. DEFAULT MEMORY QUALIFIERS

Function Globals Locals String Parameters Pointer

Small (s) _P _ R _R _ R _R _R
Small (S) _P _ R _R _ P _R _R
Large (1) _P M _ M M M M
Large (L) _P _M _M _P _M _M

UMO002801-COR1099 2-3

=

&

ogo

(&)
Q
&Y | pointers C-Compiler Overview
POINTERS
A pointer to a qualified memory type can not be converted to a different qualified memory
type.

STRUCTURE AND UNION MEMBERS

The memory qualifier for a structure or union take precedence over an individual member’s
memory qualifier. No warning is issued when a member’s memory qualifier does not match a
structure or union’s memory qualifier

Example:

struct{

__Rchar num; /* R memory qualifier is ignored*/
__Rchar * ptr; [*ptr points to a char in RFILE.

Ptr itself is stored in __ M memory*/
} M mystruct; [*all of mystruct is allocated to XDATA
(__M) memory.*/

2-4 UMO002801-COR1099

é.
Q
C-Compiler Overview Pragmas ~> /
SIZE OF POINTERS
The following is a list of pointers and their size:
* Pointerto __ Ris 1 byte
* Pointerto _ Mis 2 bytes
* Pointerto P is 2 bytes
PRAGMAS
Three pragmas are supported by the compiler.
#pragma interrupt
Functions which are preceded with the préfixagma interrupt are assumed to be

interrupt handlers. They should not take parameters or return values. The compiler saves
the registers used in the prologue and restores them in the epilogue of function codes fol
interrupts. When returning from interrupt functions, i instruction is generated
instead ofet, which is used for normal functions.

Norte: If the-f option is enabled, the interrupts have a separate working register group associate
with them and the registers are not save or restored in the prologue or epilogue.

Example

#include <z8.h>

#define PORTO (*(unsigned char *)0)

unsigned char delay;

#pragma interrupt

void timer(void)

{
PORTO = ~PORTO;
}
int main()
{

PORTO = 1,

_setvector(IRQ1, timer);

UMO002801-COR1099 2-5

=
&

sgo

o
o
A | Pragmas C-Compiler Overview

}

#pragma at <address>

This pragma is used to declare variables at an address. In the generated assembly file the
compiler emits directives to allocate the variable at a specified address. This pragma is appli-
cable only for globals and statics. It is ignored if used with locals.

For example:
#pragma at 100
__Rintvar;

#pragma sfr <address>

This pragma is used to specify the address of a variable. The differengerérgma at is
that the compiler does not perform allocations. This pragma is only applicable for uninitial-
ized globals. It is ignored if used with locals or initialized globals.

For example:
#pragma sfr 100
__Rintvar;

2-6

UMO002801-COR1099

C-Compiler Overview Using the DOS command line 4%

USING THE DOS COMMAND LINE

The Z8 C-Compiler can be used on the DOS command line.

COMMAND LINE FORMAT

The syntax for the Z8 C-Compiler command line is as follows:

z8 [switches] ... source ...

COMMAND LINE SWITCHES

The following command-line switches (Table 2-2) are recognized.
TABLE 2-2. COMMAND LINE SWITCHES

Switch Function

-C Generate code for stack overflow check

-D <macro> Define a preprocessor macro

-f Separate working register group for interrupts

-0 Generate symbolic debug information

-1 Specify include path. This option may be repeated to specify
multiple include paths

-Ml Specify the model of compilation as large. In this model,
stack and data reside in external data memory. This option is
only for use with the Z8 .

-Ms Specify the model of compilation as small. In this model,
stack and data reside in register file. This is the default
model.

-ML Specify the model of compilation as large. The constant
strings are allocated in code memory. The stack and other
data reside in external data memory. This option is only for
use with the Z8.

-MS Specify the model of compilation as small. The constant

strings are allocated in code memory. The stack and other
data reside in register file

-Nbss <secname>

Change RFILE .bss section name to <secname> (default is
.nbss)

-Nbsse <secname>

Change even aligned RFILE bss section name to <secname>
(default is.nbsse)

-Ndata <secname>

Change RFILE data section name to <secname> (default is
.ndata)

UMO002801-COR1099

=

&

sgo

&
o
&Y | Using the DOS command line

C-Compiler Overview

TABLE 2-2. COMMAND LINE SWITCHES

Switch

Function

-Ndatae <secname>

Change even aligned RFILE data section name to <secname>
(default is.ndatae)

-Ntext <sechame>

Change code section name to <secname> (default is
ptext)

-Nxdata <secname>

Change XDATA data section name to <secname> (default is
xdata)

-Nxbss <sechame>

Change XDATA bss section name to <secname> (default is
Xbss)

-0 <name> Specifies the output assembly file name
-0 Enable optimizations. Default is off
-Od loopinvariant Disable loop invariant optimization

tailrec

Disable tail recursion optimization

-Od loopunroll Disable loop-unrolling optimization

-Od loopstrength Disable loop strength optimization

-Od loopfuse Disable loop fuse optimization

-Od inliner Disable function-inline optimization

-Od deadobj Disable dead object removal optimization

-Od deadblock Disable dead block removal optimization

-Od deadcode Disable dead code removal optimization

-Od blockmerge Disable block merge optimization

-Od chainflow Disable chain flow (jump to jump) optimization
-Od copyprop Disable copy propagation optimization

-Od cse Disable common sub-expression elimination optimization
-Od strength Disable strength reduction optimization

-Od constprop Disable constant propagation optimization

-P <filename>

Generate a preprocessed output to the file specified by
<filename>

-speed Optimize for speed, default is size

-src Include C source in generated assembly when —g option is
on

-static Causse the compiler to use static call frames. This is
supported for small models only and is ignored for large
models. The default is dynamic call frames

-V Display compiler version number

UMO002801-COR1099

C-Compiler Overview

Using the DOS command line 4%

TABLE 2-2. COMMAND LINE SWITCHES

Switch Function

-W Enable warning messages

-Wa Enable portability warnings about accuracy loss in
conversions

-Wall Equivalent to specifying all of the warning options

-Wansi Enable warnings about non-ANSI usage

-Wb Enable warnings about unreachable break statements

-Wd Enable warnings about variable usage, such as unused
variable, defined but not used, etc.

-Wf Enable warnings about function return values

-Wh Enable some heuristic warnings

-Wp Enable portability warnings, and warnings about handling
enumeration types

-Wstrict Enable strict warnings

-Wv Enable warnings about unused parameters (not included in
-Wd)

-Wx Enable warnings about unused global objects

-ZiLOG Allow // style comments

NoTe: Other switches are for ZiLOG use only in this version.

COMMAND LINE EXAMPLES

Compiling

The command for Z8:

Z8 test.c generatetest.s . By default the -Ms option is used.

Assembling

The command for Z8:

zma -pz8 -J -otest.o test.s generategest.o

The command for Z8Plus:

zma -pz8E001 -J -otest.o test.s generatesest.o

UMO002801-COR1099

=

&
sgo

&
o
&Y | Optimizing for Size and Speed C-Compiler Overview

Linking
The command for Z8:

zld -mtest -otest (compiler installation pathg8inits.o test.o generates
test.ld andtest.map

NoTe: z8inits.o is the run time initialization for a small model.

The command for Z8Plus:

zld -mtest -otest (compiler installation pathig8plusinit.o test.o gen-
eratedest.ld andtest.map

NoTEe: z8plusinit.o is the run time initialization for a small model.

OPTIMIZING FOR SIZE AND SPEED

The Z8 C-compiler allows the user to optimize for speed and size.

When optimizing for size the following optimizations are performed:
* constant folding
¢ dead object removal
* simple jump optimization
® constant propagation
® copy propagation
® dead-code elimination
* common sub-expression elimination
* jump-to-jump optimization
* |oop invariant code motion
* constant condition evaluation and other condition evaluation optimizations
® constant evaluation and expression simplification
® tail recursion
* |oop fusion
* loop strength reduction

When optimizing for speed the following additional optimizations are performed:

* loop unroll

2-10 UMO002801-COR1099

C-Compiler Overview Optimizing for Size and Speed 4/ /

® function inligning

NoTe: A feature is provided to disable individual optimizations, which allows the user more control
over optimizations.

DEBUGGING CODE AFTER OPTIMIZATION

Debugging of code should be complete before performing any level of optimization on th
code. If the generate debug information is on no optimizations are performed, even if an c
mization level is chosen. See General Configuration on page 1-14 for more information ©
enabling and disabling debug information.

OPTIMIZATION DESCRIPTIONS

The following is a description of the supported optimizations

Constant Folding

The compiler simplifies expressions by folding them into equivalent forms that require few
instructions.

ExampLE: Before optimization: a=(b+2) +(c+3); After optimization: a=b+c+5

Dead Object Removal

Local and static variables that are declared but never used are removed

Simple Jump Optimization

Jump to next instruction is removed. Unreachable code is also removed.

Constant Propagation

Unaliased local variables are replaced by their assigned constant.

Copy Propagation

The compiler replaces references to the variable with its value. The value could be anoth
variable, a constant, or a common sub-expression. This replacement increases the chan
for constant folding, common sub-expression elimination, or total elimination of the vari-
able.

UMO002801-COR1099 2-11

=

&
sgo

&
o
&Y | Optimizing for Size and Speed C-Compiler Overview

Dead Code Elimination

Useless code is removed or changexat.example: assignments to local variables that are
not used afterwards are removed.

Common Sub Expression Elimination

When the same value is produced by two or more expressions, the compiler computes the
value once, saves it, and reuses it.

Jump to Jump Optimization

Targets in the control statement are replaced by the ultimate target.

Loop Invariant Code Motion

Expression within loops that compute the same value are identified and are replaced by a ref-
erence to a precomputed value.

Constant Condition Evaluation

The conditional expressions that are constant are computed at compile time.

Constant Evaluation and Expression Simplification

Replaces an expression by a simpler expression with the same semantics using constant fold-
ing, algebraic identities and tree transformations.

Tail Recursion

When a void result procedure ends with a call to itself, this optimization will replace the call
with assignment of each actual parameter to the corresponding formal, and jump to the
beginning of the procedure.

Function Inlining

This optimization replaces a call statement by a modified in-line copy of the callee. Only
procedures that do not contain a call to another procedure and are not too large are selected
for inlining.

Loop Fusion

Two adjacent loops are fused into one loop when they match a number of constraints. Both
loops should have the same iteration count, and be data independent from each other. When
the iteration counters are different objects, the optimization will tries to eliminate one.

2-12 UMO002801-COR1099

C-Compiler Overview Understanding errors 4> /

Loop Strength
This optimization converts array indexing operations into pointer operations, for the sake
faster operation of loops.

Loop Unroll

This optimization tries to unroll a loop body, thus reducing loop control overhead, allowin
more optimizations.

UNDERSTANDING ERRORS

The Z8 C-Compiler detects and reports errors in the source program. When an error is
encountered, an error message is displayed in the ZDS Output window.

For example:

“file.c”, line n: error message

ENABLING WARNING MESSAGES

Warning messages can be disabled or enabled through the command line. See Table 2-:
more information on the various warnings that can be enabled.

INCLUDED FILES

A path to included files must be defined before the C-Compiler can recognize included fil
An included files path is set in the Preprocessor page in the C-Compiler setting options ¢
log box. For more information on the Preprocessor page, see Defining Preprocessor Sym
on page 1-19. For command line version -1 command line option can be used to specify 1
include path.

PREDEFINED NAMES
The Z8 C-Compiler comes with four predefined macro names. These names are:
* LINE_ Expands to the current line number
* FILE_ Expands to the current source filename
* DATE_Expands to the compilation date in the forrmoh dd yy
* TIME_ Expands to the compilation time in the formhbtmm:ss

The following predefined names are only valid when the corresponding memory model is
selected:

UMO002801-COR1099 2-13

=

&

QO

A | Generated Assembly File C-Compiler Overview

® _SMALL_ isdefinediftheMs compilation option is selected (Small Model—Stack
and data reside in register file)

* SMALLC is defined if the -MS compilation option is selected (Small Model—The
constant strings are allocated in code memory, the stack and other data reside in register
file)

* LARGE. is defined if theMIl compilation option is selected (Large model—Stack
and data reside in external data memory)

* LARGEC s defined if theML compilation option is selected (Large model—The
constant strings are allocated into code memory, the stack and other data reside in
external data memory)

NoTe: For more information on using the command line see page 2-7. For more information on select-
ing a memory model using ZDS see page 1-21.

GENERATED ASSEMBLY FILE

After compiling a c-file an assembly file is generated and placed in the project directory. The
assembly files are downloaded and linked and a COFF file is produced that is downloaded to
the emulator. The user can modify the assembly in the ZDS Editor window.

To open and edit the assembly file:
1. SelecOpen File from the ZDSEdit menu. Thepen file dialog box appears.
2. SelectAssembler Files from thefiles of type pull down menu.

3. Browse to the project directory and double click on the file you want to open. The selected
file appears in the ZDS edit window.

2-14 UMO002801-COR1099

C-Compiler Overview Object Sizes A /

OBJECT SIZES

The following table lists basic objects and their size.

Type Size
char 8 bits
short 16 bits
int 16 bits
long 32 bits
float 32 bits
double 32 bits

long double 32 bits

SECTION NAMES

The compiler places code and data into separate sections in the object file. Every sectior
a name that is used by the linker to determine which sections to combine and how sectio
are ultimately grouped in the executable file.

* Initialized Data Segment (.ndata) in RFILE

* Even aligned initialized data segment (.ndatae) in RFILE

* Uninitialized Data Segment (.nbss) in RFILE bss

* Even aligned uninitialized data segment (.nbsse) in RFILE bsse

® Code segment (.ptext)

® Working register group (.worksec) in RFILE

* Optional additional working register group (.worksec2) in RFILE for interrupts
Additional Z8 sections:

¢ Initialized external data segment (.xdata) in XDATA xdata

* Uninitialized external data segment (.xbss) in XDATA xbss

UMO002801-COR1099 2-15

=

&
sgo

&
o
&Y | Incorporating Assembly with C C-Compiler Overview

INCORPORATING ASSEMBLY WITH C
The Z8 C-Compiler allows the user to incorporate assembly code into their C code.

In the body of a function, use them statement. The syntax for the ASM statement is
_asm(“<assembly line>");.

* The contents cfkassembly line> must be legal assembly syntax
® The only processing done on tassembly line> iS escape sequences
* Normal C escape sequences are translated
Example
#include <z8.h>
int main()
{
_asm(*\tclr\timr\n”);

return (0);

INCORPORATING C WITH ASSEMBLY

The C libraries that are provided with the compiler can also be used to add functionality to an
assembly program. The user can create their own function or they can reference the library
using theref statement.

The following example shows an assembly file referencing the furiotigin . Theimul
function is defined in the C file.

NoTe: The C-Compiler precedes the use of globals with an underscore in the generated assembly.

Examples

Assembly file
.def _main
.def vall
.def val2
.defres

ref _imul

2-16 UMO002801-COR1099

C-Compiler Overview Incorporating C with assembly 4% /

define .ptext,space=ROM
define .ndata,space=RFILE
define .nbss,space=RFILE

segment .ndata
vall:dw 10
val2:dw 20

res:dw 0
segment .ptext
_main:
; save the registers if any in use

; in this example none

push val2+1; push parameter 2

push val2+0

push vall+1; push parameter 1

push vall1+0

call _imul; call the ¢ functions
add spl,#4

Id res+0,r0 ; the resultis in rO,rl1

Id res+1,r1 ; save the result

UMO002801-COR1099 2-17

=

&
ogo

&
o
&Y | Incorporating C with assembly C-Compiler Overview

;restore the registers, if any were saved

Id rO,#0; return O
Id r1,#0

ret

Referenced C file
typedef unsigned short uint16;
typedef char int8;

uintl6 imul(uint16 x, uintl6 y)

{
uintl6 res;
int8 i;
res =0;
for (i=0; i < (int8)(16); i++)
{
if(y&1)
{
res += x;
}
X=Xx<<1;
y=y>>1;
}
return res;
}

2-18 UMO002801-COR1099

INTRODUCTION

Z8/Z8PLUS C-COMPILER USER’S MANUAL

CHAPTER 3
LINKING FILES

The purpose of the Zilog cross linker is to read relocatable object files and libraries and |i
them together to generate an executable load file. The file may then be loaded or written
target system and debugged using ZDS. This chapter briefly describes the linker’s inputs
outputs, and how the inputs to the linker are transformed into those outputs. See Figure .

Relocatable

Object File

(Librarian)

Relocatable
Object File

Library File

—(_tinker)

Executable
Load File

FIGURE 3-1. LINKER FUNCTIONAL RELATIONSHIP

WHAT THE LINKER DOES

The linker performs the following fundamental actions:

UMO002801-COR1099

=

&

sgo

&
o
&Y | Introduction Linking Files

® Reads in Relocatable object modules and library files in Common Object File Format
(COFF) or ZiLOG Object Module Format (ZOMF)

* Resolves external references
* Assigns absolute addresses to Relocatable sections
* Supports Source-Level Debugging (SLD)

* Generates a single executable module to download into the target system or burn into
OTP or EPROM programmable devices

® Generates a map file
® Generates COFF files (for Libraries)

Linkage Editing
The linker creates a single executable load module from multiple relocatable objects.

Resolving External References

After reading multiple object modules, the linker searches through each of them to resolve
external references to public symbols. The linker looks for the definition of public symbols
corresponding to each external symbol in the object module.

Relocating Addresses

The linker allows the user to specify where the code and data are stored in the target proces-
sor system’s memory at run-time. Changing relocation addresses within each section to an
absolute address is handled in this phase.

Debugging Support

When the debug option is specified, the linker creates an executable file that can be loaded
into the debugger at run-time. A warning message is generated if any of the object modules
do not contain a special section that has debug symbols for the corresponding source module.
Such a warning indicates that a source file was compiled or assembled without turning on a
special switch that tells the compiler or assembler to include debug symbols information
while creating a relocatable object module.

Creating Map Files

The linker can be directed to create a map file that details the location of the Relocatable sec-
tions and Public Symbols.

3-2 UMO002801-COR1099

Linking Files Using the Linker with the C-compiler 4’ /

Outputting OMF Files

Depending upon the options specified by the user, the linker can produce two types of O
files:

* |ntel Hex Format Executable File
®* COFF Format Executable File

USING THE LINKER WITH THE C-COMPILER

The linker is used to link compiled and assembled object files, C-Compiler libraries, user
created libraries and C runtime initialization files. These files are linked according to the
commands that are given in the linker command file. Once the files are linked an execute
file in COFF (.Id) format is produced. The linker can also produce Intel hex (.hex, .dat) file
map files (.map) and symbol files (.sym) in ZiLOG symbol format.

The primary components of the linker are shown in Figure 3-2.

Link Command
Line or_Flle Symbol File in Zilog
(text file) Symbol Format
(text file)
Map File
C-compiler libraries _ Linker
Link and Relocate
T Linker Messages
Relocatable Object C run-time Initialization files.
Modules
and
ZOMF or COFF Executable Intel Hex
Library Files (-hex & .dat) or
(binary files) COFF (FI(P Format
ile

FIGURE 3-2. LINKER COMPONENTS

UMO002801-COR1099 3-3

=

&
© S,°
00

&Y | Using the Linker with the C-compiler Linking Files

RUN TIME INITIALIZATION FILE

The C run-time initialization file is an assembly program that initializes memory before link-
ing. This assembly program clears the .bss section, sets the register and stack pointers, and

initializes the port mode resisters. Once these initializations are complete the program calls
main , which is the C entry point.

INSTALLED FILES

The following linker associated files in Table 3-1 are installed in the C-Compiler installation
directory.

3-4 UMO002801-COR1099

Linking Files Using the Linker with the C-compiler 4

TABLE 3-1. LINKER REFERENCED FILES

z8inits.s Assembly source of example C startup module for z8 small model

z8inits.o Example C startup module for z8 small model.

z8initx.s Assembly source of example C startup module for z8 large model.

z8initx.o Example C startup module for z8 large model.

z8plusinit.s Assembly source of example C startup module for z8 plus.

z8plusinit.o Example C startup module for z8 plus.

z8s.Ink Example linker command file for z8 small model.

z8x.Ink Example linker command file for z8 large model.

z8p.Ink Example linker command file for z8 plus.

libz.lib Library helper functions for integer arithmetic.

libc.lib Standard C library for small model.

libfz.lib Library helper functions for floating point arithmetic (small model).

libcst.lib Standard C library for small model, static frame.

libfzst.lib Library helper functions for floating point arithmetic (small model, static
frame)

libcl.lib Standard C library for large model

libfzl.lib Library helper functions for floating point arithmetic (large model).

NoTe: Source files for the run-time initialization files are provided in Appendix A, Initialization and
Link Files.

UMO002801-COR1099 3-5

=

&

sgo

o
o
&Y | Invoking the Linker Linking Files

INVOKING THE LINKER
The linker can be invoked either through ZDS or the DOS command line.

USING THE LINKER IN ZDS

The linker is automatically invoked when performing a build in ZDS. The following steps are
performed when using the linker with ZDS.

1. ZDS calls the linker after compiling and assembling all the files.
2. All the object files and libraries that are include in the project are linked.

3. Error or warning messages that are generated by the linker are displayed in the ZDS output
window.

4. If no errors are encountered the linker produces an executable file in either a COFF or HEX
format. This executable file is placed in the project directory.

NoTEe: Include the C-run time initialization file that is appropriate for the compilation model chosen
in the project. See Table 3-1 for a list of initialization files that are included with the C-Compiler. For
more information on adding included files see Create a File on page 1-10

Configuring the Linker with ZDS

Perform the following steps to set the linker command file options in ZDS :

1. Open the project

2. SelectSettings from theProject menu. The Settings Options dialog box appears.
3. Click the C-Compiler tab.
4

. SelectGeneral from theCategory pop-up list in the C-Compiler Settings dialog box. The
C-Compiler General page appears.

5. Click theSet Default button.

6. Click Apply.

NoTe: The linker’s settings can also be modified through the Linker Settings dialog box. Consult
ZDS'’s on-line help for more information on configuring the linker.

3-6 UMO002801-COR1099

&
Linking Files Invoking the Linker '\'7\'0 /
USING THE LINKER WITH THE COMMAND LINE
Use the syntax below to invoke the linker on the command line :
zld -0 output name -a init-object-files { object files} c-comp-lib-file lib-files
map-file linker-command-file
* output-name is the .Id filename.For example: If test.ld is the desired

output file, then the output name shoulddwst

* init.-object-file is the C run time initialization file. For examp#8inits.o is for
the Z8 small memory modet8initx.o is for the Z8 large memory model and
Z8plusinit.o is for the Z8Plus memory model. The user can specify their ow
initialization files to use. If the file is not in the current directory the path needs to
included in the file name.

* {object files} is the list of object files that are to be linked.

* c-comp-lib-file is the C-Compiler library files that need to be linked. See Table 3:
for a list of library files that are include with the C-Compiler.

* lib-files is the library files created by the user using the ZDS archiver (ZAR).
* map-file is the map file’s name that is to be generated by the linker.

* linker-command-file is the command file to be linked by the linker. Sample
command files are provided in the lib directory. See Table 3-1 for a list of commea
files that are include with the C-Compiler.

Linker Command Line example
The following examples shows how to invoke the linker using the DOS command line.
For the Z8:

zld -otest -A lib-path\z8inits.o test.o lib-path\libz.lib lib-
path\libc.lib lib-path\libfz.lib\lib-path\z8s.link -mtest.map

For the Z8Plus:

zld -otest -A lib-path\z8plusinit.o test.o lib-path\libz.lib
lib-path\libc.lib lib-path\libfz.lib\lib-path\z8p.link -
mtest.map

This example generates test.ld, test.hex, test.dat, test.sym and test.map as output. The |
path is the (C-Compiler installation path)\ lib, and test.o is the object file corresponding t
the C file created after compiling and assembling.

For more information on the linker command line see Linker Command Line on page 3-1

UMO002801-COR1099 3-7

=

&

ogo

o
o
&Y | Invoking the Linker Linking Files

MEMORY LAYOUT

The linker allocates memory for sections per the linker command file. These sections need to
be contiguous for the output section and cannot contain memory holes. The memory layout
of RFILE and XDATA memory space is shown in Figure 3-3 and Figure 3-4. See Section
Names on page 2-15 for a description of the sections.

Note: The STACK is in RFILE for the small model and is in XDATA for the large model .

Allocated Third | \WORKSEC

i STACK/FRAMES
Remaining Memory (smaII model) — BSS_END
.NBSS - =.BSS_LENGTH
Allocated Second[
.NBSSE
L BSS_BASE
.NDATA
Allocated First[
.NDATAE ——BSSE_END
.WORKSEC2 -
(optional) — .BSSE_LENGTH
PORT
REGISTERS -BSSE_BASE

Note: For large model the stack is moved from RFILE to the top of XDATA.

FIGURE 3-3. RFILE MEMORY LAYOUT

3-8 UMO002801-COR1099

é.
Q
Linking Files Invoking the Linker 4 /
STACK/FRAMES
(large model) -XBSS_END
XBSS - =.XBSS_LENGTH
KDATA —— XBSS_BASE
Note: This model is only for the Z8.For large model the stack is moved from
RFILE to the top of XDATA.
FIGURE 3-4. XDATA MEMORY LAYOUT
UMO002801-COR1099 3-9

X

&
&)
&Y | Linker symbols Linking Files

LINKER SYMBOLS

The linker command file defines the symbols that are used by the C run-time initialization
file to initialize the stack pointer, register pointer and clear the BSS section. Table 3-2 shows
the symbols that are used by the linker.

TABLE 3-2. LINKER SYMBOLS

BSS BASE Base of .NBSS section
BSSE_BASE Base of .NBSSE section
XBSS_BASE Base of .XBSS sectiofi§ only)
BSS END End of .NBSS section +1
BSSE_END End of .NBSSE section +1
XBSS_END End of .XBSS section +1 (Z8 only)
BSS LENGTH Length of .NBSS section

BSSE_LENGTH Length of .NBSSE section

XBSS_LENGTH Length of .XBSS section (Z8 only)

TOS Top of stack

BOS Bottom of stack

NoTe: Additional symbols are defined in the linker command file for copy table operations. See Appendix
A, Initialization and Link Files for more information. Source files for the run-time initialization files are
also provided in Appendix A

3-10 UMO002801-COR1099

Linking Files Linker Command File 4

LINKER COMMAND FILE

The linker command file is text file that contains the linker command and options. The link
commands that can be used in the command file are summarized in Table 3-3. For linker
options see Table 3-4.

TABLE 3-3. SUMMARY OF LINKER COMMANDS

Assign Assigns a control section to an address space
Copy Makes a copy of a control section
Define Creates a public symbol at link-time; helps resolve an external symbol

referenced at assembly time

Group Creates a group of control sections that can be defined using the range
command

Order Specifies the ordering of specified control sections

Range Sets a lower bound and an upper bound for an address space or a control
section

Note: The linker commands are listed alphabetically in the table, for convenience; however, it is r

required that commands be specified alphabetically in the command file. Command words and pa

eters other than those shown in the table are not legal. If any other word or parameter is used, an

message is written to the messages file, and the linker terminates without linking anything.
Linker Command ASSIGN

The ASSIGN command assigns a control section to an address space. This command is
designed to be used in conjunction with the assembler's .SECT instruction.

Syntax: ASSIGN <sectiorr <address-space

The <sectiorr must be a control section name, and thddress-spacemust be an address
space name.

Example: ASSIGN DSEG DATA

Linker Command COPY

This command makes a copy of a control section. The control section is loaded at the sp
fied location, rather than at its linker-determined location. This command is designed to

UMO002801-COR1099 3-11

=

&

sgo

o
o
&Y | Linker Command File Linking Files

make a copy of an initialized RAM data section in a ROM address space, so that the RAM
may be initialized from the ROM at run time.

Syntax: COPY <sectior» <address-space[AT <expression]

The <sectiorr must be a control section name, and thddress-spacemust be an address
space name. The optional AExpression is used to copy the control section to a specific
address in the target address space.

Example: COPY bankl_data ROM or COPY bankl_data ROM at %1000

Linker Command GROUP

This command allows the user to group control sections together and define the size of the
grouped sections using the RANGE command.

Syntax: GROUP group nhame = <section® <section2]

Thegroup namas the name of the grouped sections. The group name can not be the same
name as an existing address sp&eetionlandsection2are the sections assigned to the
group. Sections within a group are allocated in the specified order.

NoTe: The new group’s lower address location and size must be defined uisng the linker's RANGE
command.

Example:
GROUP RAM =.data,.bss
RANGE RAM = 1000h:1FFFh

This example defines RAM as a block of memory in the rang@@®h to 1FFFh. The

.data and.bss control sections are allocated to this block. Tdeta section is allo-

cated at addred©00h and thebss section is allocated at the end of tHata section.
Linker Command ORDER

This command determines a sequence of linking.

Syntax: ORDER <hameZ? [,<name2 ...]

<name> must be a control section name.

Example: ORDER CODEL, CODE2

3-12 UMO002801-COR1099

Linking Files Linker Command File 4 /

Linker Command RANGE

This command sets the lower and upper limits of a control section or an address space.
linker issues a warning message if an address falls beyond the range declared with this ¢
mand.

The linker provides multiple ways for the user to apply this command for a link session. Ee
separate case of the possible syntax is described below.

CAase 1
Syntax : RANGE <name> <expression> , <length> [, ...]

<name> may be a control section, or an address space. Thedigtessior indicates the
lower bound for the given address RANGE. Thength> is the length, in words, of the
object.

Example: RANGE ROM %700 , %100

CASE 2
Syntax :RANGE <name> <expression : <expression [, ...]

<name> may be a control section or an address space. Thedikptession indicates the
lower bound for the given address RANGE. The secaxgpressionr is the upper bound for
it.

Example: RANGE ROM %17ff : %2000

NoTe: Refer to the Expression Formats for the format of writing an expression.

Linker Command DEFINE

This command is used for a link-time creation of a user defined public symbol. It helps in
resolving any external references (EXTERN) used in assembly time.

Syntax: DEFINE <symbol name = <expression

<symbol name is the name of the public symbokxpression is the value of the public
symbol.

Example: DEFINE copy_size = copy top of usr_seg - copy base of
usr_seg

The “Expression Formats” section, which follows, explains different types of expressions
that can be used.

UMO002801-COR1099 3-13

=

&

sgo

o
o
&Y | Linker Command Line Linking Files

LINKER COMMAND LINE

The syntax for the linker command line is:

ZLD [<options>]<filenamel> ...<filenamen>

The “[]” enclosing the stringdptions denotes that the options are not mandatory. In
this document this convention will be continued for further discussion on linker’s
syntax and operations.

The items enclosed ik“> " indicate the non-literal items.

The* .. 7 (ellipses) indicate that multiple tokens can be specified. These tokens are
of the type of the non-literal specified in the syntax just prior to the ellipses.

The syntax uses9% prefix to a number to specify a hexadecimal numeric
representation.

The linker links the files listed infienames list. Each {ilename> is the name of a
COFF aobject file or library file, or the name of a text file containing linker commands
and options.

3-14

UMO002801-COR1099

Linking Files

Linker Command Line Y’ /

COMMAND LINE SPECIFICATIONS

The following rules govern the command line specification:

ZLD examines the named files’ content to determine the file type (object, library,
command).

The file names of the input files specified on the command line must be separatec
spaces or tabs.

The commands are not case sensitive; however, command line options and syr
names are case sensitive.

The order of specifying options does not matter.
The options must appear before the filenames.

Specifying that input files use both command line and list creates a union of the two ¢
of inputs that is treated as input object and library files. The linker links the file twic
if the file names appear twice.

During linking, the linker combines all object files in the order specified and resolve
the external references. linker searches through the library files when it is unable
resolve references.

A command file is a text file containing linker commands and options. Comments c
be specified by use of the “;” character.

If the linker is unable to open a named object file, library file, or a link command file
an error message is written to the standard error device, and the linker termin:
without linking anything.

If an unsupported OMF type of object file is included in tlikerame- list, the linker
displays an error message and terminates without linking anything.

UMO002801-COR1099 3-15

&
&)
A | Linker Command Line Linking Files

LINKER COMMAND LINE OPTIONS
Linker options are specified by prefixing an option word with a minus (-). The linker options
are summarized in Table 3-4 .

TABLE 3-4. SUMMARY OF LINKER OPTIONS

-? Displays product logo, version number, and brief description of
command line format and options.

-a Generates an absolute object file in Intel Hex Format or Zilog Symbol
Format.

-e <entry> Specifies the program entry point. <entry> is any Public symbol.

-g Generates symbolic debug information.

-m <mapfile> Generates the map file.

-0 <objectfile> Generates the output file.

-q Disables display of linker’s copyright notice.

-r Disables address range checking on relocatable expression. This option
should be used when linking compiler generated code

-W Treats warnings as errors.

-wW Disables the generation of warning messages.

1. Itis not required that options be specified alphabetically on the command line.

2. If any other option word is used, an error message is written to the messages file, and the linker
terminates without linking anything.

3. All options must be preceded by a dash (-).

NoTe: For more information on the linker options refer to the ZDS On-line help.

3-16 UMO002801-COR1099

Linking Files Using the Librarian 4 /

Symbol File In Zilog Symbol Format

A symbol file in the Zilog symbol format is generated when the user specifies the absolut
link mode (-a linker option). It is in the standard Zilog symbol format as shown inFigure 3-
which follows. In each row, the first column lists the symbol name, second column lists th
attribute of the symbol (“I" stands for internal symbol, “N” stands for local symbol, and “X"
stands for public symbol), and the third column provides the value of the symbol express
as four hexadecimal bytes.

_dgt_outbfr | 0000800d
_digit_cntr | 00008011
_dgt_inbfr | 00008012
_led_refresh | 000000b5
hex_reg N 00008009
_bcd_hex_conv

| fffff75
_7conv_reg_4 N 00008009
_8conv_reg_3 N 0000800a

FIGURE 3-5. SAMPLE SYMBOL FILE

USING THE LIBRARIAN

The librarian allows the user to modify libraries and view the contents of individual library
files.

The syntax for the librarian command line is as follows:
Zar [options] library [memberl ... membern]

The librarian performs the operation specified in the options on the named library using t
named member files. Libraries conventionally have an extensidéib of and library mem-
bers have an extension .of .

UMO002801-COR1099 3-17

&
Q
&Y | Using the Librarian Linking Files

COMMAND LINE OPTIONS

TABLE 3-5. SUMMARY OF LIBRARY OPTIONS

Command line options are specified by prefixing an option letter with a minus (-). The com-
mand line options are summarized in Table 3-5.

2place
nply

not

-? Requests a usage display.

-a Appends the specified members to the library. This command does not r¢
an existing member that has the same name as an added member; it sir
appends new members to the end of the library.

-d Deletes the specified members from the library.

-q Quiet mode: suppress display of the librarian copyright notice.

-r Replaces the specified members in the library. If a specified member is 1
found in the library, the librarian adds it instead of replacing it.

-t Prints a table of contents of the library. If you don’t specify any member
names, the librarian lists the names of all members of the library. If you
specify any member names, only those members are listed.

-X Extracts the specified members from the library. The librarian does not re
from the library those members that it extracts.

move

3-18

UMO002801-COR1099

Z8/Z8PLUS C-COMPILER USER’S MANUAL

\,0 CHAPTER 4
,\‘,\ / RUN TIME ENVIRONMENT

FUNCTION CALLS

The C-compiler imposes a strict set of rules on function calls. Except for special runtime
support functions, any function that calls or is called by a C-function must follow these rul
Failure to adhere to these rules can disrupt the C-environment and cause a program to 1

FUNCTION CALL STEPS
A function performs the following tasks when it calls another function:
1. The caller saves the registers that are in use.

2. The caller pushes the arguments on the stack in reverse order (the rightmost declare
argument is pushed first, and the leftmost is pushed last). This places the leftmost argu
on top of the stack when the function is called.

3. The caller calls the function.
4. When the called function is complete, the caller pops the arguments off the stack.

CALL FRAMES
The Z8/28plus C-Compiler supports both dynamic and static call frames.

By default the C-compiler uses dynamic call frames to allocate memory on the stack. To
static call frames, you need to specify the static call frame switch on the command line (
Command line switches on page 2-7) or select the Static Call frames option in ZDS.

The following sections explain the difference between dynamic call frames and static ca
frames.

NoTe: Static call frames are only available for the Z8small model.

UMO002801-COR1099 4-1

=

&

sgo

<
o
A | Call Frames Run Time Environment

DYNAMIC CALL FRAMES

A dynamic call frame allocates memory during the run-time cycle of the program. As mem-
ory is requested it is allocated onto the stack. Once the function has returned, the memory
that it was using is freed on the stack.

Dynamic call frames are perfect for programs that use recursion, or that call functions indi-
rectly through pointers. For most processors the use of dynamic memory allocation is the
most efficient way to partition and map call frames. However, processors that do not have a
dedicated frame pointer register or have small amounts of memory, a static frame layout is
ideal. Table 4-1 shows a diagram of a Z8 dynamic call frame layout.

Run Time Stack
Stack Pointer Low Address

Temporaries /'y
I Locals
Callers frame pointer high byte
Callers frame pointer low byte
Return address high byte
Return address low byte
Parameter 0
Parameter 1

Frame Pointer >

\
High Address

ParameterN

Note: The frame layout for the small memory model uses only one
byte for the frame pointer.

FIGURE 4-1. FRAME LAYOUT FOR THE LARGE MODEL

4-2 UMO002801-COR1099

Run Time Environment Call Frames 4)

RESPONSIBILITIES OF A CALLED FUNCTION
A called function must perform the following tasks.

1. Push the frame pointer (r14, r15) for large model, and r15 for small model onto the sta

N

. Allocate the local frame.

w

. Execute the code for the function.

D

. If the function returns a scalar value, place it in the working registers rOef8arA value
is returned in rQ, intin rO,rl, long in rO,r1,r2,r3.

5. Deallocate the local frame.
6. Restore the caller’'s frame pointer.
7. Return.

SPECIAL CASES FOR A CALLED FUNCTION

The following exceptions apply to special cases for called functions.

Returning a structure

If the function returns a structure, the caller allocates the space for the structure on top of
stack. The size of the space allocated is the size of structure plus two additional bytes. T
return a structure, the called function then copies the structure to the space allocated by
caller.

Not allocating a local frame

If there are no local variables, no arguments, no use of temporary locations, the code is 1
being compiled to run under the debugger and the function does not return a structure, t
is no need to allocate a stack frame.

UMO002801-COR1099 4-3

=

&

sgo

<
o
A | Call Frames Run Time Environment

STATIC CALL FRAMES

A static frame layout should be used when the physical memory size of the processor is lim-
ited or the chip does not have a built in frame-pointer register. Function frames used in a
static frame layout are allocated in memory during link time. A memory map of these func-
tions is created and is used by the compiler to assign a frame’s address during runtime.
Instead of assigning a dynamic address to the function frame a static address is used that was
decided by the linker during the link process.

The linker maps frame addresses based on a function call graph that identifies memory
resources that are shared at the same time. Disadvantage of static frames is that a function
cannot be called through a pointer due to the static assignment of function addresses.

Static call frames are supported in small model only. When the compiler is invoked with
—static option static call frames are generated. The structure of a static call frame is as
given below:

For the non static function fun :

Local are allocated in a frame labelédfun, see Figure 4-2. All the locals are at a posi-
tive offset from this label.

Local 1
Local 2
Local 3

Local n

FIGURE 4-2. .L_FUN FRAME LAYOUT

4-4

UMO002801-COR1099

Run Time Environment Call Frames 4)

Parameters are allocated in a frame labdbedun . See Figure 4-3. All the parameters are
at positive offset from this label.

Parameter n
Parameter n-1

Parameter 2
Parameter 1

FIGURE 4-3. .P_FUN FRAME LAYOUT

For static function the frame labels also include the base of filename. For example for st
function sfun inprog.c , the local frame label will b&_prog_sfun , and the parameter
frame label will bePprog_sfun

UMO002801-COR1099 4-5

Q
&Y | Using the Run-Time Library Run Time Environment

USING THE RUN-TIME LIBRARY

The C-Compiler provides a collection of run-time libraries that can be easily referenced and
incorporated into your code. The following sections describe the use and format of run-time
libraries. Each library function is declared in a supplied header file. These header files can be
included in C programs using teclude preprocessor directive. See Defining Prepro-
cessor Symbols on page 1-19 for more information on including header files.

Each header file contains declarations for a set of related functions plus any necessary types
and additional macros. See Table 4-1 for a description of each header file that is include with
the C-Compiler.

The header files are installed in the include directory of the compiler installation path. The
library files are installed in the lib directory of the compiler installation path.

NoTe: Two sets of libraries are included, one for small memory model (libc.lib) and one for large
memory model (libcl.lib).

INSTALLED FILES

The following header files are installed in the C-Compiler installation directory.

TABLE 4-1. INSTALLED LIBRARY FILES

asset.h Asserts
ctype.h Character handling functions
errno.h Errors

UMO002801-COR1099

Run Time Environment Using the Run-Time Library 4

TABLE 4-1. INSTALLED LIBRARY FILES (CONTINUED)

float.h Floating point limits

limits.h Interger limits

math.h Math functions

stdarg.h Variable argument macros

stddef.h Standard defines

stdio.h Standard types and defines

stdlib.h General utility functions

string.h String handling functions

z8.h Z8 specific function and defines
z8plus.h Z8plus specific function and defines

UMO002801-COR1099 4-7

=

&

sgo

o
o
&Y | Library Functions Run Time Environment

LIBRARY FUNCTIONS
Run-time library routines are provided for the following:
¢ Buffer Manipulation
* Character Classification and Conversion
* Data Conversion
* Math
® Searching and Sorting
® String Manipulation
* Variable-Length Argument Lists

* Intrinsic functions

_asm FUNCTION
Header file statement: #include <z8.h>
Syntax: _asm ("assembly language instruction")

The _asm pseudo-function emits the specified assembly language instruction to the com-
piler-generated assembly file. The _asm pseudo-function accepts a single parameter, which
must be a string literal.

Return Value

There is no return value.

abs FUNCTION
Header file statement: #include<stdlib.h>

Syntax: intabs (intn);

Parameter Description
n Integer Value

The abs function returns the absolute value of its integer parameter n.
Return Value

The abs function returns the absolute value of its parameter. There is no error return.

4-8 UMO002801-COR1099

Run Time Environment Library Functions 4 /

atof, atoi, atol FUNCTIONS
Header file statement: #include <stdlib.h>
Syntax: double atof (const char *string);
int atoi (const char *string);

long atol (const char *string);

Parameter Description
string String to be converted

These functions convert a character string to a double-precision floating-point value (atof
an integer value (atoi), or a long integer value (atol). The input string is a sequence of che
ters that can be interpreted as a numerical value of the specified type.

The function stops reading the input string at the first character that it cannot recognize &
part of a number. This character may be the null character (\0’) terminating the string.

The atof function expects string to have the following form:
[whitespace] [sign] [digits] [.digits] [{d | D | e | E }[sign]digits]

A whitespace consists of space and/or tab characters, which are ignored; sign is either p
(+) or minus (-); and digits are one or more decimal digits. If no digits appear before the ¢
imal point, at least one must appear after the decimal point. The decimal digits may be fc
lowed by an exponent, which consists of an introductory letter (d, D, e, or E) and an
optionally signed decimal integer.

The atoi and atol functions do not recognize decimal points or exponents. The string argt
ment for these functions has the form

[whitespace] [sign]digits
where whitespace, sign, and digits are exactly as described above for atof.
Return Value

Each function returns the double, int, or long value produced by interpreting the input che
acters as a number. The return value is 0 (for atoi), OL (for atol), and 0.0 (for atof) if the inf
cannot be converted to a value of that type.

* The return value is undefined in case of overflow.

UMO002801-COR1099 4-9

=

&

sgo

o
o
&Y | Library Functions Run Time Environment

_di FUNCTION
Header file statement: #include <z8.h>
Syntax: void _di (void);

The _di routine disables interrupts by executing a z8 di machine instruction. This is an intrin-
sic function.

Return Value

There is no return value.

div FUNCTION
Header file statement: #include <stdlib.h>
Syntax: div_tdiv (int num, int denom);

Parameter Description

numer Numerator
denom Denominator

The div function divides numer by denom, computing the quotient and the remainder. The
div_t structure contains the following elements:

Element Description
int quot Quotient
int rem Remainder

The sign of the quotient is the same as that of the mathematical quotient. Its absolute value is
the largest integer that is less than the absolute value of the mathematical quotient. If the
denominator is 0, the behavior is undefined.

Return Value

The div function returns a structure of type div_t, comprising both the quotient and the
remainder. The structure is defined in stelib.h header file.

4-10 UMO002801-COR1099

Run Time Environment Library Functions 4 /

_el FUNCTION
Header file statement: #include <z8.h>
Syntax: void _ei (void);

The _ei routine enables interrupts by executing a Z8 ei machine instruction. This is an int
sic function.

Return Value

There is no return value.

IS FUNCTIONS

Header file statement: #include <ctype.h>

Syntax: intisalnum (intc);
int isalpha (intc);
int iscntrl (intc);
int isdigit (intc);
int isgraph (intc);
int islower (intc);
int isprint (intc);
int ispunct (intc);
intisspace (intc);
int isupper (intc);
int isxdigit (intc);

Parameter Description

c Interger to be tested

Each function in thés family tests a given integer value, returning a nonzero value if the
integer satisfies the test condition and O if it does not. The ASCII character set is assume

Theis functions and their test conditions are listed below:

UMO002801-COR1099 4-11

=

&

ogo

o
o
&Y | Library Functions Run Time Environment

Function Test Condition

isalnum Alphanumeric (‘A-‘Z’, ‘a’-‘z’, or ‘0’-'9’)
isalpha Letter (A-'Z or ‘a’-'z")

iscntrl Control character (Ox00 - Ox1F or Ox7F)
isdigit Digit (‘0’-'9")

isgraph Printable character except space (*)
islower Lowercase letter (‘a’-‘z")

isprint Printable character (0x20 - OX7E)
ispunct Punctuation character

isspace White-space character (0x09 - 0xOD or 0x20)
isupper Uppercase letter (A-'Z")

isxdigit Hexadecimal digit (A-‘F'’a’-f’, or ‘0’-'9")
Return Value

These routines return a nonzero value if the integer satisfies the test condition and 0 if it does
not.

labs FUNCTION
Header file statement: #include <stdlib.h>

Syntax: longlabs (longn);

Parameter Description

n Long-integer value

The labs function produces the absolute value of its long-integer argument n.

Return Value

The labs function returns the absolute value of its argument. There is no error returned.

4-12 UMO002801-COR1099

Run Time Environment Library Functions 4 /

memchr FUNCTION
Header file statement: #include <string.h>

Syntax: void *memchr (const void *buf, int ¢, size_t count)

Parameter Description

buf Pointer to buffer
c Character to look for
count Number of characters

The memchr function looks for the first occurrence of c in the first count bybes oft
stops when it finds or when it has checked the first count bytes.

Return Value

If successful, memchr returns a pointer to the first location of c in buf. Otherwise, it returr
NULL.

memcmp FUNCTION
Header file statement: #include <string.h>

Syntax: int memcmp (const void *bufl, const void *buf2, size_t count)

Parameter Description

bufl First buffer
buf2 Second buffer
count Number of characters

The memcmp function compares the first count bytes of bufl and buf2 and returns a valt
indicating their relationship, as follows:

Value Meaning

<0 bufl less than buf2
=0 bufl identical to buf2
>0 bufl greater than buf2

Return Value

The memcmp function returns an integer value, as described above.

UMO002801-COR1099 4-13

=

&

sgo

o
o
&Y | Library Functions Run Time Environment

memcpy FUNCTION
Header file statement: #include <string.h>

Syntax: void *memcpy (void *dest, const void *src, size_t count)

Parameter Description

dest New buffer
src Buffer to copy from
count Number of characters to copy

The memcpy function copies count bytes of src to dest. If the source and destination overlap,
these functions do not ensure that the original source bytes in the overlapping region are cop-
ied before being overwritten. Usgemmove to handle overlapping regions.

Return Value

Thememcpyfunction returns the value dest .

memmove FUNCTION
Header file statement: #include <string.h>

Syntax: void *memmove (void *dest, const void *src, size_t count)

Parameter Description

dest Destination object

src Source object

count Number of characters to copy

Thememmaoveunction copies count characters from the source (src) to the destination

(dest). If some regions of the source area and the destination overlaygntimeovefunction

ensures that the original source bytes in the overlapping region are copied before being over-
written.

Return Value

Thememmove function returns the value oest .

4-14 UMO002801-COR1099

Run Time Environment Library Functions 4 /

memset FUNCTION
Header file statement: #include <string.h>

Syntax: void *memset (void *dest, int ¢, size_t count)

Parameter Description

dest Pointer to destination
c Character to set
count Number of characters

The memset function sets the first count bytes of dest to the character
Return Value
Thememset function returns the value dest .

rand FUNCTION
Header file statement: #include <stdlib.h>
Syntax: int rand (void);
The rand function returns a pseudorandom integer in the range 0 to RAND_MAX. The sre
routine can be used to seed the pseudorandom-number generator before calling rand.
Return Value

The rand function returns a pseudorandom number, as described above. There is no errc
returned.

UMO002801-COR1099 4-15

=

&

ogo

&
o
&Y | Library Functions

Run Time Environment

_setvector FUNCTION

Header file statement: #include <z8.h>

Syntax:

void _setvector

Parameter Description

idVector
handler

(int idVector, void (*handler)(void))

Vector number to set
Interrupt handler function

The _setvector sets the interrupt vector of the CPU to the address of the specified handler.
This is an intrinsic function. The following manifest constants are defined by <z8.h> and
should be used to specify the vector whose value is to be set.

Constant Description

IRQO
IRQ1
IRQ2
IRQ3
IRQ4
IRQ5

RESET

Interrupt O vector.
Interrupt 1 vector.
Interrupt 2 vector.
Interrupt 3 vector.
Interrupt 4 vector.
Interrupt 5 vector.

Reset vector.

Return Value

There is no return value.

4-16

UMO002801-COR1099

Run Time Environment Library Functions 4 /

srand FUNCTION
Header file statement: #include <stdlib.h>

Syntax: void srand (unsigned int seed);

Parameter Description
seed Seed for random-number generation

The srand function sets the starting point for generating a series of pseudorandom intege
To reinitialize the generator, use 1 as the seed argument. Any other value for seed sets tl

generator to a random starting point.

The rand function is used to retrieve the pseudorandom numbers that are generated. Ca
rand before any call to srand generates the same sequence as calling srand with seed p

as 1.
Return Value

There is no return value.

strcat FUNCTION

Header file statement: #include <string.h>

Syntax: char *strcat (char *string1, const char *string2);
Parameter Description

stringl Destination string

string2 Source string

The strcat function appends string2 to stringl, terminates the resulting string with a null
character, and returns a pointer to the concatenated string (stringl).

The strcat function operates on null-terminated strings. The string arguments to this funct
are expected to contain a null character (\0") marking the end of the string. No overflow
checking is performed when strings are copied or appended.

Return Value
The return values for this function are described above.

UMO002801-COR1099 4-17

=

&

ogo

o
o
&Y | Library Functions Run Time Environment

strchr FUNCTION

Header file statement: #include <string.h>

Syntax: char *strchr (const char *string, int c);
Parameter Description

string Source string

c Character to be located

The strchr function returns a pointer to the first occurrence of ¢ (converted to char) in string.
The converted character ¢ may be the null character (\0’); the terminating null character of
string is included in the search. The function returns NULL if the character is not found.

The strchr function operates on null-terminated strings. The string arguments to these func-
tions are expected to contain a null character (\O’) marking the end of the string.

Return Value
The return values for this function are described above.

4-18 UMO002801-COR1099

Run Time Environment Library Functions 4 /

strcmp FUNCTION
Header file statement: #include <string.h>

Syntax: int strcmp (const char *stringl, const char *string2);

Parameter Description

stringl String to compare
string2 String to compare

The strcmp function compares stringl and string2 lexicographically and returns a value i
cating their relationship, as follows:

Value Meaning

<0 stringl less than string2
=0 stringl identical to string2
>0 stringl greater than string2

The strcmp function operates on null-terminated strings. The string arguments to these ft
tions are expected to contain a null character (\0’) marking the end of the string.

Note that two strings containing characters located between ‘Z’ and ‘a’ in the ASCII table
‘r, v, v, 0, and ') compare differently depending on their case. For example, the
two strings, "ABCDE" and "ABCD"", compare one way if the comparison is lowercase
("abcde" > "abcd”™") and compare the other way ("ABCDE" < "ABCD"") if it is uppercase.
Return Value

The return values for this functions are described above.

UMO002801-COR1099 4-19

=

&

sgo

o
o
&Y | Library Functions Run Time Environment

strcpy FUNCTION
Header file statement: #include <string.h>

Syntax: char *strcpy (char *string1, const char *string2);

Parameter Description
stringl Destination string
string?2 Source string

The strcpy function copies string2, including the terminating null character, to the location
specified by stringl, and returns string1l.

The strcpy function operates on null-terminated strings. The string arguments to this function
are expected to contain a null character (\0’) marking the end of the string. No overflow
checking is performed when strings are copied or appended.

Return Value
The return values for this function are described above.

strcspn FUNCTION

Header file statement: #include <string.h>

Syntax: Size_t strcspn (const char *stringl, const char *string2);
Parameter Description

stringl Source string

string2 Character set

The strcspn functions return the index of the first character in stringl belonging to the set of
characters specified by string2. This value is equivalent to the length of the initial substring
of stringl consisting entirely of characters not in string2. Terminating null characters are not
considered in the search. If string1 begins with a character from string2, strcspn returns 0.

The strcspn function operates on null-terminated strings. The string arguments to these func-
tions are expected to contain a null character (\0’) marking the end of the string.

Return Value
The return values for this function are described above.

4-20 UMO002801-COR1099

Run Time Environment Library Functions 4 /

strlen FUNCTION
Header file statement: #include <string.h>

Syntax: size_t strlen (const char *string);

Parameter Description
string Null-terminated string

The strlen function returns the length, in bytes, of string, not including the terminating nul
character (\0).

Return Value

This function returns the string length. There is no error returned.

strncat FUNCTION
Header file statement: #include <string.h>

Syntax: char *strncat (char *stringl, const char *string2, size_t count);

Parameter Description

stringl Destination string
string2 Source string
count Number of characters appended

The strncat function appends, at most, the first count characters of string2 to stringl, terr
nate the resulting string with a null character (\0"), and return a pointer to the concatenat
string (stringl). If count is greater than the length of string2, the length of string2 is used
place of count.

Return Value

The return values for these functions are described above.

UMO002801-COR1099 4-21

=

&

ogo

o
o
&Y | Library Functions Run Time Environment

strncmp FUNCTION
Header file statement: #include <string.h>

Syntax: int strncmp (const char *string1, const char *string2, size_t count);

Parameter Description

stringl String to compare
string2 String to compare
count Number of characters compared

The strncmp function lexicographically compares, at most, the first count characters of
stringl and string2 and return a value indicating the relationship between the substrings, as

listed below:

Value Meaning

<0 stringl less than string2
=0 stringl identical to string2
>0 stringl greater than string2

Return Value

The return values for this function are described above.

4-22 UMO002801-COR1099

&
oc.'ﬁ
Run Time Environment Library Functions 4 /
strncpy FUNCTION
Header file statement: #include <string.h>
Syntax: char *strncpy (char *stringl, const char *string2, size_t count);

Parameter Description

stringl Destination string
string?2 Source string
count Number of characters copied

The strncpy function copies count characters of string2 to stringl and return stringl. If co
is less than the length of string2, a null character (\0’) is not appended automatically to tl
copied string. If count is greater than the length of string2, the stringl result is padded wi
null characters (\0’) up to length count.

Note that the behavior of strncpy is undefined if the address ranges of the source and de:
tion strings overlap.

Return Value
The return values for this function are described above.

strpbrk FUNCTION
Header file statement: #include <string.h>
Syntax: char *strpbrk (const char *stringl, const char *string2);

Parameter Description
stringl Source string
string2 Character set

The strpbrk function finds the first occurrence in string1 of any character from string2. Th
terminating null character (\Q’) is not included in the search.

Return Value

This function returns a pointer to the first occurrence of any character from string2 in strin
A NULL return value indicates that the two string arguments have no characters in comrr

UMO002801-COR1099 4-23

=

&

sgo

o
o
&Y | Library Functions Run Time Environment

strrchr FUNCTION

Header file statement: #include <string.h>

Syntax: char *strrchr (const char *string, int c);
Parameter Description

string Searched string

c Character to be located

The strrchr function finds the last occurrence of ¢ (converted to char) in string. The string’s
terminating null character (\0’) is included in the search. (Use strchr to find the first occur-
rence of c in string.)

Return Value

This function returns a pointer to the last occurrence of the character in the string. A NULL
pointer is returned if the given character is not found.

strspn FUNCTION
Header file statement: #include <string.h>

Syntax: size_t strspn (const char *stringl, const char *string2);

Parameter Description

stringl Searched string
string2 Character set

The strspn function returns the index of the first character in stringl that does not belong to
the set of characters specified by string2. This value is equivalent to the length of the initial
substring of stringl that consists entirely of characters from string2 . The null character (\0’)
terminating string2 is not considered in the matching process. If stringl begins with a charac-
ter not in string2, strspn returns O.

Return Value

This function returns an integer value specifying the length of the segment in string1 consist-
ing entirely of characters in string2.

4-24 UMO002801-COR1099

Run Time Environment Library Functions 4 /

strstr FUNCTION
Header file statement: #include <string.h>

Syntax: char *strstr (const char *string1, const char *string2)

Parameter Description

stringl Searched string
string?2 String to search for

The strstr function returns a pointer to the first occurrence of string2 in string1l.
Return Value

This function returns either a pointer to the first occurrence of string2 in string1, or NULL
it does not find the string.

UMO002801-COR1099 4-25

=

&

sgo

o
o
&Y | Library Functions Run Time Environment

strtok FUNCTION
Header file statement: #include <string.h>

Syntax: char *strtok (char *string1, const char *string2)

Parameter Description
stringl String containing token(s)
string2 Set of delimiter characters

The strtok function reads stringl as a series of zero or more tokens and string2 as the set of
characters serving as delimiter of the tokens in stringl. The tokens in stringl may be sepa-
rated by one or more of the delimiters from string2.

The tokens can be broken out of stringl by a series of calls to strtok. In the first call to strtok
for stringl, strtok searches for the first token in stringl, skipping leading delimiters. A
pointer to the first token is returned. To read the next token from stringl, call strtok with a
NULL value for the stringl argument. The NULL stringl argument causes strtok to search
for the next token in the previous token string. The set of delimiters may vary from call to
call, so string2 can take any value.

Note that calls to this function will modify stringl, because each time strtok is called it
inserts a null character (\0’) after the token in string1.

Return Value

The first time strtok is called, it returns a pointer to the first token in stringl. In later calls
with the same token string, strtok returns a pointer to the next token in the string. A NULL
pointer is returned when there are no more tokens. All tokens are null-terminated.

4-26 UMO002801-COR1099

&
Run Time Environment Library Functions '\'7\'0 /
strtod, strtol, strtoul FUNCTIONS
Header file statement: #include <stdlib.h>
Syntax: double strtod (const char *nptr, char **endptr);
long strtol (const char *nptr, char **endptr, int base);
unsigned long strtoul (const char *nptr, char **endptr, int base)

Parameter Description

nptr String to convert

endptr Pointer to character that stops
scan

base Number base to use

The strtod, strtol, and strtoul functions convert a character string to a double-precision val
a long-integer value, or an unsigned long-integer value, respectively. The input string is a
sequence of characters that can be interpreted as a numerical value of the specified type

These functions stop reading the string at the first character they cannot recognize as par
number. This may be the null character (\0’) at the end of the string. With strtol or strtoul,
this terminating character can also be the first numeric character greater than or equal to
base. If endptr is not NULL, a pointer to the character that stopped the scan is stored at 1
location pointed to by endptr. If no conversion could be performed (no valid digits were
found or an invalid base was specified), the value of nptr is stored at the location pointed
by endptr.

The strtod function expects nptr to point to a string with the following form:
[whitespace] [sign] [digits] [.digits] [{d | D | e | E}[sign]digits]

A whitespace consists of space and tab characters, which are ignored; sign is either plus
or minus (-); and digits are one or more decimal digits. If no digits appear before the decir
point, at least one must appear after the decimal point. The decimal digits can be followec
an exponent, consisting of an introductory letter (b, D, e, or E) and an optionally signed c
imal integer.

The first character that does not fit this form stops the scan.

UMO002801-COR1099 4-27

=

&

sgo

o
o
&Y | Library Functions Run Time Environment

The strtol and strtoul functions expect nptr to point to a string with the following form:
[whitespace] [{ + [-}] [0 [{ x | X }]] [digits]

If base is between 2 and 36, then it is used as the base of the number. If base is 0, the initial
characters of the string pointed to by nptr are used to determine the base. If the first character
is 0 and the second character is not ‘x’ or ‘X’, then the string is interpreted as an octal inte-
ger; otherwise, it is interpreted as a decimal number. If the first character is ‘0’ and the sec-
ond character is ‘x’ or ‘X', then the string is interpreted as a hexadecimal integer. If the first
character is ‘1’ through ‘9’, then the string is interpreted as a decimal integer. The letters ‘a’
through ‘z’ (or ‘A’ through ‘Z’) are assigned the values 10 through 35; only letters whose
assigned values are less than base are permitted.

The strtoul function allows a plus (+) or minus (-) sign prefix; a leading minus sign indicates
that the return value is negated.

Return Value

The strtod function returns the value of the floating-point number, except when the represen-
tation would cause an overflow, in which case they return +/-HUGE_VAL. The functions
return O if no conversion could be performed or an underflow occurred.

The strtol function returns the value represented in the string, except when the representation
would cause an overflow, in which case it returns LONG_MAX or LONG_MIN. The func-
tion returns 0 if no conversion could be performed.

The strtoul function returns the converted value, if any. If no conversion can be performed,
the function returns 0. The function returns ULONG_MAX on overflow.

In all these functions, errno is set to ERANGE if overflow or underflow occurs.

4-28

UMO002801-COR1099

Run Time Environment Library Functions 4 /

tolower, toupper FUNCTIONS
Header file statement: #include <ctype.h>
Syntax: int tolower (intc);

int toupper (intc);

Parameter Description
C Character to be converted

The tolower and toupper routines macros convert a single character, as described below!
Function MacroDescription

tolower tolower Converts c to lowercase if appropriate

toupper toupper Converts c to uppercase if appropriate

The tolower routine converts c to lowercase if ¢ represents an uppercase letter. Otherwis
is unchanged.

Thetoupper routine converts to uppercase if represents an lowercase letter. Otherwise,
c is unchanged.

Return Value
The tolower and toupper routines return the converted character c. There is no error retul

UMO002801-COR1099 4-29

va_arg, va_end, va_start FUNCTIONS
Header file statement: #include <stdarg.h>
Syntax: typeva arg (va_listarg ptr, type);
void va_end (va_listarg_ptr);

void va_start (va_list arg_ptr, prev_param)

Parameter Description

arg_ptr Pointer to list of arguments

prev_param Pointer preceding first optional
argument

type Type of argument to be retrieved

The va_arg, va_end, and va_start macros provide a portable way to access the arguments tc
function when the function takes a variable number of arguments. The macros are listed
below:

Macro Description

va_arg Macro to retrieve current argument

va_end Macro to reset arg_ptr

va_list The typedef for the pointer to list of arguments

va_start Macro to set arg_ptr to beginning of list of optional arguments

The macros assume that the function takes a fixed number of required arguments, followed
by a variable number of optional arguments. The required arguments are declared as ordinal
parameters to the function and can be accessed through the parameter names. The optione
arguments are accessed through the macros in STDARG.H, which set a pointer to the first
optional argument in the argument list, retrieve arguments from the list, and reset the pointel
when argument processing is completed.

The ANSI C standard macros, defined in STDARG.H, are used as follows:
¢ All required arguments to the function are declared as parameters in the usual way.

* The va_start macro sets arg_ptr to the first optional argument in the list of arguments
passed to the function. The argument arg_ptr must have va_list type. The argumer
prev_param is the name of the required parameter immediately preceding the firs
optional argument in the argument list. If prev_param is declared with the register

Run Time Environment Library Functions 4 /

storage class, the macro’s behavior is undefined. The va_start macro must be |
before va_arg is used for the first time.

* The va_arg macro does the following:

Retrieves a value of type from the location given by arg_ptr

Increments arg_ptr to point to the next argument in the list, using the size of ty
to determine where the next argument starts

The va_arg macro can be used any number of times within the function to retrie
arguments from the list.

After all arguments have been retrieved, va_end resets the pointer to NULL.

Return Value

The va_arg macro returns the current argument, va_start and va_end do not return value

UMO002801-COR1099 4-31

Z8/Z8PLUSs C-coOMPILER USER’S MANUAL

-
E

N APPENDIX A
/ INITIALIZATION AND LINK FILES

Z8 LARGE MODEL

The following are examples of an initialization file and link file for a Z8 large model.

INTIALIZATION FILE

; z8initx: C Runtime Startup for z8 large model
; Copyright (c) ZiLOG, 1999

define Xdata, space=XDATA

define Xbss, space=XDATA

define .ndata, space=RFILE

define .nbss, space=RFILE

define .ndatae, align=2, space=RFILE

define .nbsse, align=2, space=RFILE

define .const, space=ROM

define .worksec, ALIGN=16, space=RFILE
define .worksec2, ALIGN=16, space=RFILE
define .Startup, space=ROM

segment .worksec ; working registers

.WORKREG: ds 16

segment .nbss

segment .nbsse

UMO002801-COR1099 A-1

=

&

ogo

o
o
&Y | Z8 Large Model Initialization and Link Files
segment Xbss
segment .ndata
segment .ndatae
segment Xxdata
segment .Startup
.def _c_int0
.def __exit
vector reset=_c_int0
.ref _main
ref .BSS_BASE, .BSS_LENGTH
ref XBSS_BASE, .XBSS_LENGTH
.ref .BSSE_BASE, .BSSE_LENGTH
.ref .TOS
.ref XBSS_END
.ref .DATA_COPY, .DATAE_COPY
.ref XDATA_COPY, .XDATAE_COPY
.ref .DATA_BASE, .DATA_LENGTH
.ref .DATAE_BASE, .DATAE_LENGTH
.ref XDATA_BASE, . XDATA LENGTH
INITBSS .equ 1
ANITDATA .equ 1
INITSIO .equ 1

; Program Entry Point

_c_intO:

Id rp,# .WORKREG; Set Register Pointer

and rp,#%F0

Id p01m,#%92 ; Stack in external memory, enable
ADRS8-15

Id p2m,#0

A-2 UMO002801-COR1099

.<,°‘°
o7
Initialization and Link Files Z8 Large Model 4 /
Id p3m,#%01 ; Enable XDATA,push-pull
Id sph, #HIGH .TOS; Load Stack Pointer High
Id spl, #LOW .TOS; Load Stack Pointer Low
if INITSIO
Id p3m,#%41 ; P3M set for bit rate generation
Id pre0,#%d ; Prescalar = 3, TO = 2 for 9600
Id t0,#%2 ;T0=2
Id tmr,#%3 ; Start bit rate
generator
clr imr ; Clear IMR
ei ; Enable Interrupt
di ; Disable Interrupt
or irq,#%10 ; Enable IRQ4
ei
.endif
Jif INITBSS ; Clear the bss area
Id rl,#BSS_LENGTH
or rl,rl
ir z, Cc_bss_done
Id r0,#.BSS_BASE
_C_bss_loop:
clr @r0
inc ro
djnz rl, c_bss_loop
_C_bss_done:
Id r2, #HIGH .XBSS_LENGTH
Id r3,#LOW .XBSS_LENGTH
Id r5,r2
or r5,r3
ir z,_c_xbss done
Id r0,#HIGH .XBSS_BASE
Id rl, #.OW .XBSS_BASE
clr r4
_C_xbss_loop:
Ide @rr0,r4
incw rrO
decw rr2
jr nz, ¢ xbss_loop
UMO002801-COR1099 A-3

=

&

ogo

o
o
&Y | Z8 Large Model Initialization and Link Files

_c_xbss_done:

_C_bsse_loop:

_C_bsse_done:

RAM

_c_data_loop:

_c_data_done:

_C_xdata_loop:

Id
or
ir

Id

clr
inc
djnz

.endif

Idci
djnz

Id
Id
Id
or
ir

Id
Id
Id
Id

Idc

rl,#BSSE_LENGTH
rl,rl

z,_Cc_bsse _done
r0,#.BSSE_BASE

@r0
r0
rl, c_bsse loop

INITDATA ; Copy the data tables from ROM to

rl,#DATA_LENGTH
rl,rl

z, c_data_done
r0,#.DATA_BASE

r2, #HIGH .DATA_COPY
r3,#LOW .DATA_COPY

@ro,@rr2
rl, c_data_loop

r2,#HIGH XDATA_LENGTH
r3,#LOW .XDATA_LENGTH
r6,r2

ré,r3

z,_c_xdata_done

r0,#HIGH .XDATA_BASE
rl, #.0W .XDATA_BASE

r4 #HIGH XDATA_COPY
r5,#.OW .XDATA_COPY

r6,@rr4

UMO002801-COR1099

Q
Z8 Large Model +Y

Initialization and Link Files /

Ide @rr0,r6

incw rr0

incw rr4

decw rr2

jr nz, ¢ xdata_loop
_C_xdata_done:

Id rl,#DATAE_LENGTH

or rl,rl

ir z,_c_datae_done

Id r0,#.DATAE_BASE

Id r2, #HIGH .DATAE_COPY

Id r3,#LOW .DATAE_COPY
_c_datae_loop:

Idci @ro,@rr2

djnz rl, c_datae loop
_c_datae_done:

.endif
e call main

clr ro ;r0=0

push ro ; argv = NULL

push ro

push ro ;argc=0

push ro

call _main

add spl,#4

adc sph,#0

clr ro ;r0=0

push ro ;

push ro

call __exit

add spl,#2

adc sph,#0

ret
__exit:

push ri5
UMO002801-COR1099 A-5

=

&

ogo

&
o
&Y | Z8 Large Model

Initialization and Link Files

push ri4
Id r15,spl
Id rl4,sph
add r15,#4
adc r14,#0
Ide ro, @rrl4d
incw rrl4
Ide rl, @rrl4d
ir $
pop ri4
pop r15
ret
LINK FILE
order .startup
order .worksec2, .ndatae, .ndata, .nbsse, .nbss
order .xdata, .xbss
range rfile 4:239
range .worksec 224:239
range xdata 32768:65535
define .BSS_BASE=base of .nbss
define .BSS_LENGTH-=length of .nbss
define .BSS_END-=base of .nbss + length of .nbss
define XBSS_BASE=base of .xbss
define XBSS_LENGTH-=length of .xbss
define .XBSS_END=base of .xbss + length of .xbss
define .BSSE_BASE=Dbase of .nbsse
define .BSSE_LENGTH-=length of .nbsse
define .DATA_COPY=copy base of .ndata
define .DATAE_COPY=copy base of .ndatae
define XDATA_COPY=copy base of .xdata
copy .ndata ROM
copy .ndatae ROM
copy Xdata ROM
define .DATA_BASE=base of .ndata
define .DATA_LENGTH-=length of .ndata
define .DATAE_BASE=base of .ndatae
define .DATAE_LENGTH-=length of .ndatae
define .XDATA_BASE=base of .xdata
A-6 UMO002801-COR1099

&
ocr
Initialization and Link Files Z8 Small Model 4 /
define XDATA_LENGTH=length of .xdata
define .TOS=highaddr of XDATA
define .BOS=freemem of XDATA

Z8 SMALL MODEL

The following are examples of an initialization file and link file for a Z8 small model.

INITIALIZATION FILE

; z8inits: C Runtime Startup for z8 small model
; Copyright (c) ZILOG, 1999

define Xdata, space=XDATA

define Xbss, space=XDATA

define .ndata, space=RFILE

define .nbss, space=RFILE

define .ndatae, align=2, space=RFILE

define .nbsse, align=2, space=RFILE

define .const, space=ROM
define .startup,space=ROM

define .worksec,ALIGN=16,space=RFILE

define .worksec2,ALIGN=16,space=RFILE
segment .worksec ; working registers

.WORKREG: ds 16

segment .nbss
segment .nbsse
segment Xbss

UMO002801-COR1099 A7

=

&

ogo

o
'\1‘\'0 | Z8 Small Model Initialization and Link Files

segment .ndata

segment .ndatae

segment Xxdata

segment .startup

.def _c_int0

.def __exit

vector reset=_c_int0

ref
ref
ref
ref
ref
ref
ref
ref
ref
ref
ref

_main

.BSS_BASE, .BSS_LENGTH
XBSS_BASE, .XBSS_LENGTH
.BSSE_BASE, .BSSE_LENGTH
.BSS_END

.TOS

.DATA_COPY, .DATAE_COPY
XDATA_COPY, .XDATAE_COPY
.DATA_BASE, .DATA_LENGTH
.DATAE_BASE, .DATAE_LENGTH
XDATA_BASE, .XDATA_LENGTH

INITBSS .equ 1
INITDATA .equ 1
INITSIO .equ 1
; Program Entry Point
_c_intO:
Id rp,# .WORKREG; Set Register Pointer
and rp,#%F0
Id p01m,#%96 ; Stack in internal memory, enable
ADRS8-15
Id p2m,#%0
Id p3m,#%01 ; Enable XDATA
Id spl,#LOW .TOS; Load Stack Pointer Low

UMO002801-COR1099

.<,°‘°
o7
Initialization and Link Files Z8 Small Model 4 /
if INITSIO
Id p3m,#%41 ; P3M set for bit rate generation
Id pre0,#%d ; Prescalar = 3, TO = 2 for 9600
Id t0,#%2 ;T0=2
Id tmr,#%3 ; Start bit rate
generator
clr imr ; Clear IMR
ei ; Enable Interrupt
di ; Disable Interrupt
or irq,#%10 ; Enable IRQ4
ei
.endif
Jif INITBSS ; Clear the bss area
Id rl,#BSS_LENGTH
or rl,rl
ir z,_Cc_bss_done
Id r0,#.BSS_BASE
_C_bss_loop:
clr @r0
inc r0
djnz rl, c_bss_loop
_C_bss_done:
Id r2,#HIGH .XBSS_LENGTH
Id r3,#LOW .XBSS_LENGTH
Id r5,r2
or r5,r3
ir z,_c_xbss done
Id r0,#HIGH .XBSS_BASE
Id rl, #.0W .XBSS_BASE
clr r4
_c_xbss_loop:
Ide @rr0,r4
incw rr0
decw rr2
jr nz, ¢ xbss_loop
UMO002801-COR1099 A-9

=

&

ogo

<
o
A | Z8 Small Model Initialization and Link Files

_c_xbss_done:

_C_bsse_loop:

_C_bsse_done:

RAM

_c_data_loop:

_c_data_done:

_C_xdata_loop:

or
ir
Id

clr
inc
djnz

.endif

Idci
djnz

Id
Id
Id
or
ir

Id
Id
Id
Id

Idc

rl,#BSSE_LENGTH
rl,rl

z,_Cc_bsse _done
r0,#.BSSE_BASE

@r0
r0
rl, c_bsse loop

INITDATA ; Copy the data tables from ROM to

rl,#DATA_LENGTH
rl,rl

z, c_data_done
r0,#.DATA_BASE

r2, #HIGH .DATA_COPY
r3,#LOW .DATA_COPY

@ro,@rr2
rl, c_data_loop

r2,#HIGH XDATA_LENGTH
r3,#LOW .XDATA_LENGTH
r6,r2

ré,r3

z,_c_xdata_done

r0,#HIGH .XDATA_BASE
rl, #.0W .XDATA_BASE

r4 #HIGH XDATA_COPY
r5,#.OW .XDATA_COPY

r6,@rr4

A-10

UMO002801-COR1099

&
oé'o

Initialization and Link Files Z8 Small Model 4 /

Ide @rr0,r6

incw rr0

incw rr4

decw rr2

jr nz, ¢ xdata_loop
_C_xdata_done:

Id rl,#DATAE_LENGTH

or rl,rl

ir z,_c_datae_done

Id r0,#.DATAE_BASE

Id r2, #HIGH .DATAE_COPY

Id r3,#LOW .DATAE_COPY
_c_datae_loop:

Idci @ro,@rr2

djnz rl, c_datae loop
_c_datae_done:

.endif
e call main

clr ro ;r0=0

push ro ; argv = NULL

push ro

push ro ;argc=0

push ro

call _main

add spl,#4

clr ro ;r0=0

push ro ;

push ro

call __exit

add spl,#2

ret
__exit:

push ris

Id r15,spl

UMO002801-COR1099 A-11

=

&

ogo

o
o

&Y | Z8 Small Model Initialization and Link Files
Id r0,3(r15)
Id rl1,4(rl5)
ir $
pop r15
ret

LINK FILE
order .startup
order .worksec2, .ndatae, .ndata, .nbsse, .nbss
order .xdata, .xbss
range rfile 4:239
range .worksec 224:239
range xdata 32768:65535
define .BSS_BASE=base of .nbss
define .BSS_LENGTH-=length of .nbss
define .BSS_END-=base of .nbss + length of .nbss
define XBSS_BASE=base of .xbss
define XBSS_LENGTH-=length of .xbss
define .XBSS_END=base of .xbss + length of .xbss
define .BSSE_BASE=Dbase of .nbsse
define .BSSE_LENGTH-=length of .nbsse
define .DATA_COPY=copy base of .ndata
define .DATAE_COPY=copy base of .ndatae
define XDATA_COPY=copy base of .xdata
copy .ndata ROM
copy .ndatae ROM
copy Xdata ROM
define .DATA_BASE=base of .ndata
define .DATA_LENGTH-=length of .ndata
define .DATAE_BASE=base of .ndatae
define .DATAE_LENGTH-=length of .ndatae
define .XDATA_BASE=base of .xdata
define XDATA_LENGTH=length of .xdata
define .TOS=base of .worksec - 1
define .BOS=freemem of RFILE

A-12 UMO002801-COR1099

Initialization and Link Files Z8 Plus 4 /
Z8 PLUS
The following are examples of an initialization file and link file for a Z8 Plus model.
INITIALIZATION FILE
; z8plusinit: C Runtime Startup for z8 plus
; Copyright (c) ZILOG, 1999
define .ndata, space=RFILE
define .nbss, space=RFILE
define .ndatae, align=2, space=RFILE
define .nbsse, align=2, space=RFILE
define .const, space=ROM
define .startup, space=ROM, org=20h
define .worksec,ALIGN=16,space=RFILE
define .worksec2,ALIGN=16,space=RFILE
segment .worksec ; working registers
.align 16
\WORKREG: ds 16
segment .nbss
segment .nbsse
segment .ndata
segment .ndatae
segment .Startup
.def _c_int0
.def __exit
ref _main
ref .BSS_BASE, .BSS_LENGTH
ref .BSSE_BASE, .BSSE_LENGTH
UMO002801-COR1099 A-13

o
o
A | Z8 Plus Initialization and Link Files

.ref .BSS_END
ref .TOS
ref .DATA_COPY, .DATAE_COPY
ref .DATA BASE, .DATA_LENGTH
ref .DATAE_BASE, .DATAE_LENGTH

INITBSS .equ 1
INITDATA .equ 1
.DWATCHDOG .equ 0

; Program Entry Point

_c_intO:
if .DWATCHDOG
Id tctlhi,#%08 ; Disable watchdog timer
.endif
Id rp,# .WORKREG; Set Register Pointer
and rp,#%F0
Id spl,#LOW .TOS; Load Stack Pointer Low
Jif INITBSS ; Clear the bss area
Id r0,#.BSS_BASE
Id rl,#BSS_LENGTH
or rl,rl
ir z,_Cc_bss_done
_C_bss_loop:
clr @r0
inc r0
djnz rl, c_bss_loop
_C_bss_done:
Id r0,#.BSSE_BASE
Id rl,#BSSE_LENGTH
or rl,rl
ir z, Cc_bsse _done
_C_bsse_loop:
clr @r0
inc r0

A-14 UMO002801-COR1099

Initialization and Link Files

djnz

_C_bsse_done:
.endif

if
RAM

or
ir

Id
Id
Id

_c_data_loop:
Idci
djnz

_c_data_done:

or
ir

Id
Id
Id

_c_datae_loop:
Idci
djnz

_c_datae_done:
.endif
- call main

call
push
push
call
add
ret

rl, c_bsse loop

INITDATA ; Copy the data tables from ROM to

rl,#DATA_LENGTH
rl,rl

z, c_data_done
r0,#.DATA_BASE

r2, #HIGH .DATA_COPY
r3,#LOW .DATA_COPY

@ro,@rr2
rl, c_data_loop

rl,#DATAE_LENGTH
rl,rl

z,_c_datae_done
r0,#.DATAE_BASE

r2, #HIGH .DATAE_COPY
r3,#LOW .DATAE_COPY

@ro,@rr2
rl, c_datae loop

_main
ro
rl
__exit
spl,#2

UMO002801-COR1099

A-15

$
069
&Y | Z8 Plus Initialization and Link Files
exit:
push ri5
Id r15,spl
Id r0,3(r15)
Id rl1,4(rl5)
ir $
pop r15
ret
LINK FILE
order .Startup
order .worksec2, .ndatae, ndata, .nbsse, .nbss
range rfile 4:63
define .BSS_BASE=base of .nbss
define .BSS_LENGTH=length of .nbss
define .BSS_END-=base of .nbss + length of .nbss
define .BSSE_BASE=base of .nbsse
define .BSSE_LENGTH=length of .nbsse
define .DATA_COPY=copy base of .ndata
define .DATAE_COPY=copy base of .ndatae
copy .ndata ROM
copy .ndatae ROM
define .DATA_BASE=base of .ndata
define .DATA_LENGTH=length of .ndata
define .DATAE_BASE=base of .ndatae
define .DATAE_LENGTH-=length of .ndatae
define .TOS=highaddr of RFILE
define .BOS=freemem of RFILE
A-16 UMO002801-COR1099

TABLE B-1. ASCIlI CHARACTER SET

Z8/Z8PLUS C-COMPILER USER’S MANUAL

APPENDIX B

ASCII CHARACTER SET

Graphic Decimal Hexadecimal Comments
0 0 Null
1 1 Start Of Heading
2 2 Start Of Text
3 3 End Of Text
4 4 End Or Transmission
5 5 Enquiry
6 6 Acknowledge
7 7 Bell
8 8 Backspace
9 9 Horizontal Tabulation
10 A Line Feed
11 B Vertical Tabulation
12 C Form Feed
13 D Carriage Return
14 E Shift Out
15 F Shift In

UMO002801-COR1099

B-1

&
'\1‘\'0 / ASCII Character Set
TABLE B-1. ASCIlI CHARACTER SET (CONTINUED)
Graphic Decimal Hexadecimal Comments

16 10 Data Link Escape
17 11 Device Control 1
18 12 Device Control 2
19 13 Device Control 3
20 14 Device Control 4
21 15 Negative Acknowledge
22 16 Synchronous Idle
23 17 End Of Block
24 18 Cancel
25 19 End Of Medium
26 1A Substitute
27 1B Escape
28 1C File Separator
29 1D Group Separator
30 1E Record Separator
31 1F Unit Separator
32 20 Space

! 33 21 Exclamation Point

" 34 22 Quotation Mark

35 23 Number Sign

$ 36 24 Dollar Sign

% 37 25 Percent Sign

& 38 26 Ampersand

' 39 27 Apostrophe

B-2

UMO002801-COR1099

KO
ASCII Character Set Ay /
TABLE B-1. ASCIlI CHARACTER SET (CONTINUED)
Graphic Decimal Hexadecimal Comments
(40 28 Opening (Left) Parenthesis
) 41 29 Closing (Right) Parenthesis
* 42 2A Asterisk
+ 43 2B Plus
, 44 2C Comma
- 45 2D Hyphen (Minus)
46 2E Period
/ 47 2F Slant
0 48 30 Zero
1 49 31 One
2 50 32 Two
3 51 33 Three
4 52 34 Four
5 53 35 Five
6 54 36 Six
7 55 37 Seven
8 56 38 Eight
9 57 39 Nine
58 3A Colon
; 59 3B Semicolon
< 60 3C Less Than
= 61 3D Equals
> 62 3E Greater Than
? 63 3F Question Mark
UMO002801-COR1099 B-3

&
'\1‘\'0 / ASCII Character Set
TABLE B-1. ASCIlI CHARACTER SET (CONTINUED)
Graphic Decimal Hexadecimal Comments

@ 64 40 Commercial At
A 65 41 Uppercase A
B 66 42 Uppercase B
C 67 43 Uppercase C
D 68 44 Uppercase D
E 69 45 Uppercase E
F 70 46 Uppercase F
G 71 47 Uppercase G
H 72 48 Uppercase H

I 73 49 Uppercase |

J 74 4A Uppercase J

K 75 4B Uppercase K
L 76 4C Uppercase L
M 77 4D Uppercase M
N 78 4E Uppercase N
0 79 4F Uppercase 0

P 80 50 Uppercase P
Q 81 51 Uppercase Q
R 82 52 Uppercase R
S 83 53 Uppercase S
T 84 54 Uppercase T
U 85 55 Uppercase U
\% 86 56 Uppercase V
WY 87 57 Uppercase W

B-4

UMO002801-COR1099

ASCII Character Set

TABLE B-1. ASCIlI CHARACTER SET (CONTINUED)

Graphic Decimal Hexadecimal Comments
X 88 58 Uppercase X
Y 89 59 Uppercase Y
Z 90 5A Uppercase Z
[91 5B Opening (Left) Bracket
\ 92 5C Reverse Slant
93 5D Closing (Right) Bracket
n 94 5E Circumflex
_ 95 SF Underscore
96 60 Grave Accent
a 97 61 Lowercase A
b 98 62 Lowercase B
c 99 63 Lowercase C
d 100 64 Lowercase D
e 101 65 Lowercase E
f 102 66 Lowercase F
g 103 67 Lowercase G
104 68 Lowercase H
i 105 69 Lowercase |
j 106 6A Lowercase J
k 107 6B Lowercase K
1 108 6C Lowercase L
m 109 6D Lowercase M
n 110 6E Lowercase N
o] 111 6F Lowercase O

UMO002801-COR1099

9<,°$
Y
A / ASCII Character Set
TABLE B-1. ASCIlI CHARACTER SET (CONTINUED)
Graphic Decimal Hexadecimal Comments
p 112 70 Lowercase P
q 113 71 Lowercase Q
r 114 72 Lowercase R
S 115 73 Lowercase S
t 116 74 Lowercase T
u 117 75 Lowercase U
\Y 118 76 Lowercase V
w 119 77 Lowercase W
X 120 78 Lowercase X
y 121 79 Lowercase Y
z 122 TA Lowercase Z
{ 123 7B Opening (Left) Brace
| 124 7C Vertical Line
} 125 7D Closing (Right) Brace
~ 126 7E Tilde
127 7F Delete

B-6

UMO002801-COR1099

Z8/Z8PLUS C-COMPILER USER’S MANUAL

™

OV
A / APPENDIX C

PROBLEM/SUGGESTION REPORT FORM

If you experience any problems while using this product, or if you note any inaccuracies
while reading the User's Manual, please copy this form, fill it out, then mail or fax it to
ZiLOG. We also welcome your suggestions!

Customer Information

Name Country
Company Telephone
Address Fax Number

City/State/zZIP

E-Mail Address

Product Information and Return Information
Serial # or Board Fab #/Rev. #

Software Version
Manual Number
Host Computer Description/Type

Problem Description or Suggestion

ZiLOG, Inc.

Wordlwide Customer Support Center
4201 Bee Caves Road Suite C-100
Austin, Tx. 78746

Fax Number: (512) 306-4072

Email: csupport@zilog.com

Provide a complete description of the problem or your suggestion. If you are reporting a
specific problem, include all steps leading up to the occurrence of the problem. Attach

additional pages as necessary.

UMO002801-COR1099

Z8/Z8PLUS C-COMPILER USER’S MANUAL

/ GLOSSARY

AABS

Address Space

ANSI
ASCII
ASM
B
Binary

Bisynchronous
Communications

Bit

Absolute Value

Physical or logical area of the target system’s

Memory Map. The memory map could be physically
partitioned into ROM to store code, and RAM for data.
The memory can also be divided logically to form sepa-
rate areas for code and data storage.

American National Standards Institute.

American Standard Code of Information Interchange.
Assembler File.

Binary.

Number system based on 2. A binary digit is a bit.

A protocol for communications data transfer used
extensive in mainframe computer networks. The

sending and receiving computers synchronize their
clocks before data transfer may begin.

A digit of a binary system. It has only two possible
values: O or 1.

UMO002801-COR1099

Glossary-3

Glossary

Buffer
Bug

Bus

Byte

CALL

Checksum

COM

Bits Per Second. Number of binary digits transmitted
every second during a data-transfer procedure.

Storage Area in Memory.

A defect or unexpected characteristic or event.

In Electronics, a parallel interconnection of the internal
units of a system that enables data transfer and

control Information.

A collection of four sequential bits of memory. Two
sequential bytes (8 bits) comprise one word.

This command invokes a subroutine

A field of one or more bytes appended to a block of n
words which contains a truncated binary sum formed
from the contents of that block. The sum is used to
verify the integrity of data in a ROM or on a tape.

Device name used to designate a communication
port.

Glossary-4

UMO002801-COR1099

Glossary

—
o gée

14

v, /

Control Section

CPU

Cross-Linkage Editor

DSP

Emulator

External Symbol

GUI

H

Hex

Hexadecimal

ICE

IE

A continuous logical area containing code or user
data. Each control section has a name. The linker puts
all those control sections with the same name in one
entity. The linker provides address spaces to the
control sections. There are either absolute control
sections or relocatable ones.

Central Processing Unit.

A linkage editor that executes on a processor that is not
the same as the target processor.

Digital Signal Processing. A specialized micropro-
cessor that is tailored to perform high repetition math
processing and improve signal quality.

An emulation device. For example, an In-Circuit
Emulator (ICE) module duplicates the behavior of the
chip it emulates in the circuit being tested.

A symbol that is referenced in the current program file
but is defined in another program file.

Graphical User Interface. The windows and text that a
user sees on their computer screen when they are
using a program.

Hexadecimal, Half-Carry Flag.

Hexadecimal.

A Base-16 Number System. Hex values are often
substituted for harder to read binary numbers.

In-Circuit Emulator. A ZiLOG product which supports
the application design process.

Interrupt Enable.

UMO002801-COR1099

Glossary-5

Glossary

IMASK

IMR

INC

INCW

Initialize

Instruction

INT

Internal Symbol

1/0

IPR

IRQ
ISDN

ISO

Immediate Data Addressing Mode.
Interrupt Mask Register.

Interrupt Mask Register.
Increment.

Increment Word.

To establish start-up parameters, typically involving
clearing all of some part of the device’s memory space.

Command.

Interrupt.

A symbol that is defined in a program file. This symbol
could be visible to multiple functions within the same
program file.

Input/Output. In computers, the part of the system that
deals with interfacing to external devices for input or
output, such as keyboards or printers.

Interrupt Priority Register.

Indirect Working-Register Pair Only.

Infrared. A light frequency range just below that of
visible light.

Interrupt Request.
Integrated Services Digital Network.

International Standards Organization.

Glossary-6

UMO002801-COR1099

Glossary

JP Jump.

JR Jump Range.

Library A File Created by a Librarian. This file contains a

Local Symbol

LSB
MCU
Ml
MLD
MPYA
MPYS
MSB
Nibble
NMI
NOP

Object Module

OMF

collection of object modules that were created by an
assembler or directly by a C compiler.

Symbol visible only to a particular function within a
program file.

Least Significant Bit.

Microcontroller or Microcomputer Unit.

Minus.

Multiply and Load.

Multiply and ADD.

Multiply and Subtract.

Most Significant Bit.

A Group of 4 Bits.

Non-Maskable Interrupt.

No Operation.

Programming code created by assembling a file with
an assembler or compiling a file with a compiler.
These are relocatable object modules and are input to

the linker in order to produce an executable file.

Object Module Format.

UMO002801-COR1099

Glossary-7

Glossary

POP

POR

Port

PRE

PROM

Protocol

PRT

PTR

PTT

Operation Code.
Operation Code.
One-Time Programmable.
Port configuration register.

Peripheral. A device which supports the import or
output of information.

Retrieve a Value from the Stack.
Power-On Reset.

The point at which a communications circuit termi-
nates at a Network, Serial, or Parallel Interface card.

Prescaler.
Programmable Read-Only Memory.

Formal set of communications procedures governing
the format and control between two communications
devices. A protocol determines the type of error
checking to be used, the data compression method, if
any, how the sending device will indicate that it has
finished sending a message, and how the receiving
device will indicate that it has received a message.

Programmable Reload Timer or Print.
Pointer.
Post, Telephone, and Telegraph. Agency in many

countries that is responsible for providing telecommu-
nication approvals.

Glossary-8

UMO002801-COR1099

Glossary

—
o 5,,°&
.Voc" /
)

Public/Global Symbol

PUSH

r

R

RA

RAM

RC

RD

RES

Resolution

RFSH

ROM

ROMCS

RP

RR

SCF

A programming variable that is available to more than
one program file.

Store a Value In the Stack.

Working Register Address.

Register or Working-Register Address, Rising Edge.
Relative Address.

Random-Access Memory. A memory that can be
written to or read at random. The device is usually
volatile, which means the data is lost without power.
Resistance/Capacitance.

Read.

Reset.

In a digital image, the total number of pixels in the
horizontal and vertical directions.

Refresh.

Read-Only Memory. Nonvolatile memory that stores
permanent programs. ROM usually consists of
solid-state chips.

ROM Chip Select.

Register Pointer.

Read Register or Rotate Right.

Set C Flag.

UMO002801-COR1099

Glossary-9

Glossary

SLL

SMR

SN

SOIC

SP

SPH

SPI

SPL

SRAM

SR

SRA

SRC

SSI

Static

ST

STKPTR

Serial Input/Output.

Shift Left or Special Lot.
Shift Left Logical.

Stop Mode Recovery.
Serial Number.

Small Outline IC.

Stack Pointer.

Stack Pointer High.

Serial Peripheral Interface.
Stack Pointer Low.

Static Random Access Memory.
Shift Right.

Shift Right Arithmetic.
Source.

Small Scale Integration. Chip that contains 5 to 50
gates or transistors.

Characteristic of Random Access Memory that
enables It to operate without clocking signals.

Status.

Stack Pointer.

Glossary-10

UMO002801-COR1099

Glossary

SUB Subtract.

SVGA Super Video Graphics Adapter.
S/W Software.

Swi Software Interrupt.

Symbol Definition

Symbol Reference

SYNC

TC

TCM
TCR
TMR

UART

UGE

UGT

Symbol defined when the symbol name is associ-
ated with a certain amount of memory space,
depending on the type of the symbol and the size of
Its dimension.

Symbol referenced within a program flow, when-

ever It is accessed for a read, write, or execute
operation.

Synchronous Communication Protocol. An event or
device is synchronized with the CPU or other process
timing.

Time Constant.

Trellis Coded Modulation.

Timer Control Register.

Timer Mode Register.

Universal Asynchronous Receiver Transmitter.
Component or functional block that handles asynchro-
nous communications. Converts the data from the
parallel format in which it is stored, to the serial format
for transmission.

Unsigned Greater Than or Equal.

Unsigned Greater Than.

UMO002801-COR1099

Glossary-11

Glossary

UM

USART

USB
uSC

uTB

VREF

WDT

Unsigned Less Than or Equal.

Unsigned Less Than.

User’'s Manual.

Universal Synchronous/Asynchronous
Receiver/Transmitter. Can handle synchronous as well
as asynchronous transmissions.

Universal Serial Bus.

Universal Serial Controller.

Use Test Box. A board or system to test a particular
chip in an end-use application.

Volt, Overflow Flag.

Supply Voltage.

Voltage from the Digital Power Supply.

Programmed Voltage.

Video Random-Access Memory. A special form of
RAM chip that has a separate serial-output port for
display refresh operations. This architecture speeds up
video adaptor performance.

Analog Reference Voltage.

Watch-Dog Timer. A timer that, when enabled under
normal operating conditions, must be reset within the
time period set within the application (WDTMR (1,0)). If

the timer is not reset, a Power-on Reset occurs. Some
earlier manuals refer to this timer as the WDTMR.

Glossary-12

UMO002801-COR1099

Glossary

WDTOUT Watch-Dog Timer Output.

Word Amount of data a processor can hold in its registers
and process at one time. A DSP word is often 16 bits.
Given the same clock rate, a 16-bit controller
processes four bytes in the same time it takes an 8-bit
controller to process two.

WR Write.

WS Wafer Sort.

X Indexed Address, Undefined.

XOR Bitwise Exclusive OR.

XTAL Crystal.

Z Zero, Zero Flag.

ZASM ZiLOG Assembler. ZiLOG’s program development
environment for DOS.

ZDS ZiLOG Developer Studio. ZiLOG’s program develop-
ment environment for Windows 95/98/NT.

ZEM ZiLOG Emulator.

ZiLOG Symbol Format

ZLD

ZLIB

Three fields per symbol including a string containing
the Symbol Name, a Symbol Attribute, and an Absolute
Value in Hexadecimal.

ZiLOG Linkage Editor. Cross linkage editor for ZiLOG’s
microcontrollers.

ZiLOG Librarian. Librarian for creating library files from
locatable object modules for the ZiLOG family of
microcontrollers.

UMO002801-COR1099

Glossary-13

Glossary

ZiLOG Macro Cross Assembler. ZiLOG’s program
development environment for Windows 3.1.

ZiLOG’s Object Module Format. The object module
format used by the linkage editor.

Glossary-14

UMO002801-COR1099

Z8/Z8PLUS C-COMPILER USER’S MANUAL

,\’,\\' / INDEX

SYMBOLS Include Files. 2-13
: Initialization files. 1-12
#pragma interrupt .
: InsertFiles. 1-11
interrupt handlers 25 Installation. 1-8-6
A=D Installing ZDS. 1.3-6
ASCII Character Set. B-1 Intgrrraljpr;gjsnctlons 9.5
Assembly File gmas. . ..o
Generation 2-14 3N
IncorporatingwithC........ 2-16 .
Assigning TYPes. 2.2 Lgnguage E)_(tensmns 2-18
Called Function. 4-3 Library functions
called function _d! funct!on 4-10
special Cases. 4-3 _ei function. . . R 4-11
C-Compiler Optimizations Page. 1-18 _setvector function. 4-16
C-Compiler Preprocessor page . 1-19 abS. .. 4-8
ChipDatao oveveennn ., 1-8 af[of, at0|., atol. 4-9
Common Obiject File Format 3-4 div function. 4-10
CONfIQUANG .« + + v eeve e e ee 1-8 IS functlon_s 4-11
Configuring Optimization Levels. 1-18 labs function. e 4-12
Create aproject 1-7 memchr function 4-13
Defining include files. 2-13 memecmp func_tlon """"" 4-13
Developmentflow. 1-2 memcpy functlop """""" 4-14
memmove function 4-14
E—| memset function 4-15
Function Call rand functiqn 4-15
Procedures 41 srand funct_lon 4-17
Function Calls. 41 strcat funct!on 4-17
G | coni .u.relltio.n """"" i_14 strchr function 4-18
| elnedraD_ gul T 1-20 strcmp function. 4-19
nclude Directories) strepy function. 4-20

UMO002801-COR1099 Index-1

strcspn function 4-20 SectionNames 2-12-15
strlen function. 4-21 SIZE . . 2-5
strncat function. 4-21 Stack pointers 2-4
strncmp function. 4-22 Structure members. 2-4
strncpy function 4-23 Technical support 1-6
strpbrk function. 4-23 TYPES. . i 2-2
strrchr function. 4-24
strspn function 4-24 T-Z
strstrfunction. 4-25 Uninstalling vvvveeeen .. 1-6
strtod, strtol, strtoul. 4-27 Union members. 2.4
strtok function. 4-26 Using the Wizard. 1-8
va_arg, va_end, va_start.. . . . 4-30 Warning Messages. 2-13

Linker XDATA memory layout. 3-10
Debugging support. 3-2
Purpose 3-1

Linker Command
ASSIGN................. 3-11
COPY............... 3-13-12
DEFINE 3-13
ORDER.................. 3-12
RANGE. 3-13

Linker Command Line 3-14
Options. 3-16
Specifications. 3-15

Manual Configuration. 1-13

g/lfﬂually Configuring the Compilér10

Memory Configuration. 1-21

Memory Extensions
Default 2-3

Memory extensions 2-18

Minimum Requirements. 1-4

New Project 1-8

ObjectSizes. 2-15

P-S

Pointers 2-3-5

Predefined Names. 2-13

Preprocessor Symbols. 1-19

requirements. 1-4

Sample Session. 1-7

Index-2 UMO002801-COR1099

	Chapter 1 Introduction
	Introduction
	ZDS Environment
	Run-time model
	Minimum Requirements
	Installing the Z8/Z8Plus C-compiler
	Registry Keys
	Installing ZDS
	Technical Support
	Sample Session
	Create a project and Select a Processor
	Configuring the Compiler using the Wizard
	Enable Static Frames
	Create a File
	Manually Configuring the Compiler
	Configure Settings
	General Configuration
	Warning Options
	Configuring Optimization Levels
	Defining Preprocessor Symbols
	Memory Configuration
	Rename a Section xName
	Downloading to an emulator or simulator
	Compile a Project
	Connect to the emulator

	Chapter 2 C-Compiler Overview
	Overview
	Language Extensions
	Assigning Types
	Default Memory Qualifiers
	pointers
	Structure and Union members
	Size of Pointers
	Pragmas
	#pragma interrupt
	#pragma at <address>
	#pragma sfr <address>
	Using the DOS command line
	Command line format
	Command line switches
	Command Line Examples
	Compiling
	Assembling
	Linking
	Optimizing for Size and Speed
	Debugging Code after Optimization
	Optimization Descriptions
	Constant Folding
	Dead Object Removal
	Simple Jump Optimization
	Constant Propagation
	Copy Propagation
	Dead Code Elimination
	Common Sub Expression Elimination
	Jump to Jump Optimization
	Loop Invariant Code Motion
	Constant Condition Evaluation
	Constant Evaluation and Expression Simplification
	Tail Recursion
	Function Inlining
	Loop Fusion
	Loop Strength
	Loop Unroll
	Understanding errors
	Enabling Warning Messages
	Included Files
	Predefined Names
	Generated Assembly File
	Object Sizes
	Section Names
	Incorporating Assembly with C
	Incorporating C with assembly
	Examples
	Assembly file
	Referenced C file

	Chapter 3 Linking Files
	Introduction
	What the Linker Does
	Linkage Editing
	Resolving External References
	Relocating Addresses
	Debugging Support
	Creating Map Files
	Outputting OMF Files
	Using the Linker with the C-compiler
	Run Time Initialization File
	Installed files
	Invoking the Linker
	Using the Linker in ZDS
	Configuring the Linker with ZDS
	Using the linker with the command line
	Linker Command Line example
	Memory Layout
	Linker symbols
	Linker Command File
	Linker Command ASSIGN
	Linker Command COPY
	Linker Command GROUP
	Linker Command ORDER
	Linker Command RANGE
	Linker Command DEFINE
	Linker Command Line
	Command Line Specifications
	Linker Command Line Options
	Symbol File In Zilog Symbol Format
	Using the Librarian
	Command Line Options

	Chapter 4 Run Time Environment
	Function Calls
	Function Call Steps
	Call Frames
	Dynamic call frames
	Responsibilities of a Called Function
	Special cases for a called function
	Returning a structure
	Not allocating a local frame
	Static Call Frames
	Using the Run-Time Library
	Installed files
	Library Functions
	_asm function
	abs function
	atof, atoi, atol functions
	_di function
	div function
	_ei function
	labs function
	memchr function
	memcmp function
	memcpy function
	memmove function
	memset function
	rand function
	_setvector function
	srand function
	strcat function
	strchr function
	strcmp function
	strcpy function
	strcspn function
	strlen function
	strncat function
	strncmp function
	strncpy function
	strrchr function
	strspn function
	strstr function
	strtok function
	strtod, strtol, strtoul functions
	tolower, toupper functions
	va_arg, va_end, va_start functions

	Appendix A Initialization and Link Files
	Z8 Large Model
	Intialization File
	Link File
	Z8 Small Model
	Initialization File
	Link file
	Z8 Plus
	Initialization File

	Appendix B ASCII Character Set
	Appendix C Problem/Suggestion Report Form
	Glossary
	Index

